

FOR GOLD & PLATINUM SERIES

SERVICE MANUAL

Revision V2.1: 1812.

Table of Contents

- 1. Precaution
- 2. Part Names And Functions
- 3. Dimension
- 4. Refrigerant Cycle Diagram
- 5. Printed Circuit Board Connector Wiring Diagram of Outdoor unit
- 6. Installation Details
- 7. Operation Characteristics
- 8. Electronic Function
- 9. Troubleshooting

WARNING

- Installation MUST conform with local building codes or, in the absence of local codes, with the National Electrical Code NFPA70/ANSI C1-1993 or current edition and Canadian Electrical Code Part1 CSA C.22.1.
- The information contained in the manual is intended for use by a qualified service technician familiar with safety procedures and equipped with the proper tools and test instruments
- Installation or repairs made by unqualified persons can result in hazards to you and others.
- Failure to carefully read and follow all instructions in this manual can result in equipment malfunction, property damage, personal injury and/or death.
- This service is only for service engineer to use.

CONTENTS

1.	Prec	aution	3
	1.1	Safety Precaution	3
	1.2	Warning	3
2.	Part	Names And Functions	6
	2.1	Model Names of Indoor/Outdoor units	6
	2.2	Part names of Indoor/Outdoor units	7
3.	Dime	nsion	8
	3.1	Indoor Unit	8
	3.2	Outdoor Unit	13
4.	Refr	igerant Cycle Diagram	14
5.	Wiri	ng Diagram	17
6	Insta	llation Details	23
	6.1	Wrench torque sheet for installation	23
	6.2	Connecting the cables	23
	6.3	Pipe length and the elevation	23
	6.4	Installation for the first time	23
	6.5	Adding the refrigerant after running the system for many years	25
	6.6	Re-installation while the indoor unit need to be repaired	25
	6.7	Re-installation while the outdoor unit need to be repaired	26
7.	Oper	ation Characteristics	28
8.	Elec	tronic Function	29
	8.1	Abbreviation	29
	8.2	Display function	29
		Main Protection	
	8.4	Operation Modes and Functions	30
9.	Trou	bleshooting	38
		Indoor Unit Error Display	
		Outdoor unit error display(not available)	
	9.3	Diagnosis and Solution	40

1. Precaution

1.1 Safety Precaution

■ To prevent injury to the user or other people and property damage, the following instructions must be followed.

Incorrect operation due to ignoring instruction will cause harm or damage.

Before service the unit, be sure to read this service manual at first.

1.2 Warning

Installation

■ Do not use a defective or underrated circuit breaker. Use this appliance on a dedicated circuit.

There is risk of fire or electric shock.

■ For electrical work, contact the dealer, seller, a qualified electrician, or an authorized service center.

Do not disassemble or repair the product, there is risk of fire or electric shock.

Always ground the product.

There is risk of fire or electric shock.

Install the panel and the cover of control box securely.

There is risk of fire of electric shock.

Always install a dedicated circuit and breaker.

Improper wiring or installation may cause electric shock.

Use the correctly rated breaker of fuse.

There is risk of fire or electric shock.

Do not modify or extend the power cable.

There is risk of fire or electric shock.

■ Do not install, remove, or reinstall the unit by yourself (customer). There is risk of fire, electric shock, explosion, or injury.

Be caution when unpacking and installing the product.

Sharp edges could cause injury, be especially careful of the case edges and the fins on the condenser and evaporator.

■ For installation, always contact the dealer or an authorized service center.

Do not install the product on a defective installation stand.

Be sure the installation area does not deteriorate with age.

If the base collapses, the air conditioner could fall with it, causing property damage, product failure, and personal injury.

Do not let the air conditioner run for a long time when the humidity is very high and a door or a window is left open.

■ Take care to ensure that power cable could not be pulled out or damaged during operation.

There is risk of fire or electric shock.

Do not place anything on the power cable.

There is risk of fire or electric shock.

■ Do not plug or unplug the power supply plug during operation. There is risk of fire or electric shock.

Do not touch (operation) the product with wet hands.

■ Do not place a heater or other appliance near the power cable. There is risk of fire and electric shock.

Do not allow water to run into electrical parts.

It may cause fire, failure of the product, or electric shock.

Do not store or use flammable gas or combustible near the product.

There is risk of fire or failure of product.

■ Do not use the product in a tightly closed space for a long time. Oxygen deficiency could occur.

When flammable gas leaks, turn off the gas and open a window for ventilation before turn the product on.

■ If strange sounds or smoke comes from product, turn the breaker off or disconnect the power supply cable.

There is risk of electric shock or fire.

Stop operation and close the window in storm or hurricane. If possible, remove the product from the window before the hurricane arrives.

There is risk of property damage, failure of product, or electric shock.

■ Do not open the inlet grill of the product during operation. (Do not touch the electrostatic filter, if the unit is so equipped.)

There is risk of physical injury, electric shock, or product failure.

■ When the product is soaked, contact an authorized service center. There is risk of fire or electric shock.

Be caution that water could not enter the product.

There is risk of fire, electric shock, or product damage.

Ventilate the product from time to time when operating it together with a stove etc.

There is risk of fire or electric shock.

Turn the main power off when cleaning or maintaining the product. There is risk of electric shock.

When the product is not be used for a long time, disconnect the power supply plug or turn off the breaker.

There is risk of product damage or failure, or unintended operation.

Take care to ensure that nobody could step on or fall onto the outdoor unit.

This could result in personal injury and product damage.

> CAUTION

Always check for gas (refrigerant) leakage after installation or repair of product.

Low refrigerant levels may cause failure of product.

Install the drain hose to ensure that water is drained away properly.

A bad connection may cause water leakage.

Keep level even when installing the product.

It can avoid vibration of water leakage.

Do not install the product where the noise or hot air from the outdoor unit could damage the neighborhoods.

It may cause a problem for your neighbors.

Use two or more people to lift and transport the product.

Do not install the product where it will be exposed to sea wind (salt spray) directly.

It may cause corrosion on the product. Corrosion, particularly on the condenser and evaporator fins, could cause product malfunction or inefficient operation.

> Operational

Do not expose the skin directly to cool air for long time. (Do not sit in the draft).

Do not use the product for special purposes, such as preserving foods, works of art etc. It is a consumer air conditioner, not a precision refrigerant system.

There is risk of damage or loss of property.

Do not block the inlet or outlet of air flow.

■ Use a soft cloth to clean. Do not use harsh detergents, solvents, etc. There is risk of fire, electric shock, or damage to the plastic parts of the product.

Do not touch the metal parts of the product when removing the air filter. They are very sharp.

Do not step on or put anything on the product. (outdoor units)

Always insert the filter securely. Clean the filter every two weeks or more often if necessary.

A dirty filter reduces the efficiency of the air conditioner and could cause product malfunction or damage.

Do not insert hands or other objects through air inlet or outlet while the product is operated.

Do not drink the water drained from the product.

Use a firm stool or ladder when cleaning or maintaining the product.
Be careful and avoid personal injury.

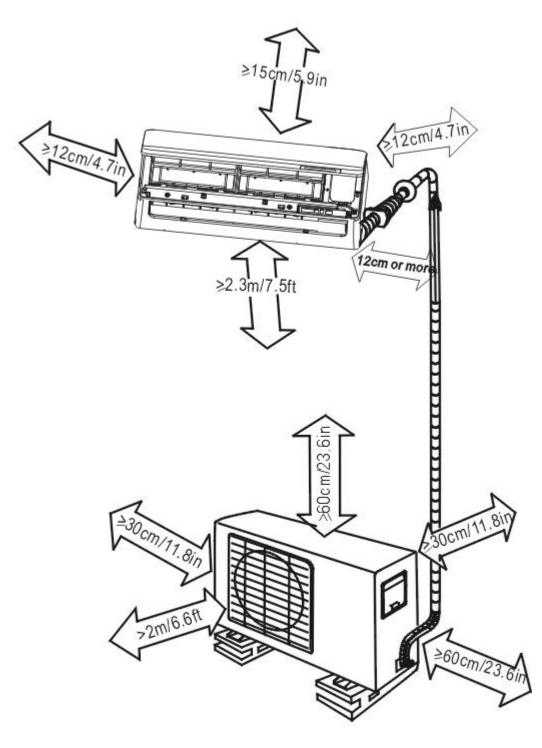
Replace the all batteries in the remote control with new ones of the same type. Do not mix old and new batteries or different types of batteries.

There is risk of fire or explosion.

Do not recharge or disassemble the batteries. Do not dispose of batteries in a fire.

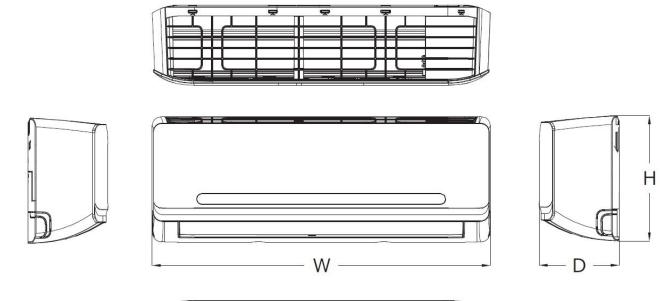
They may burn of explode.

■ If the liquid from the batteries gets onto your skin or clothes, wash it well with clean water. Do not use the remote of the batteries have leaked.


5

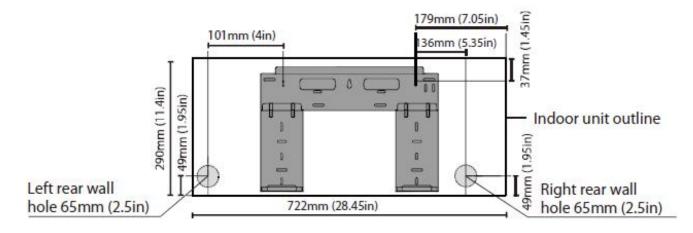
2. Part Names And Functions

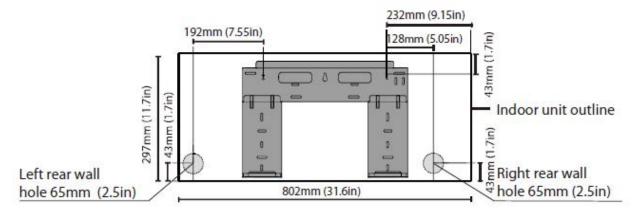
2.1 Model Names of Indoor/Outdoor units

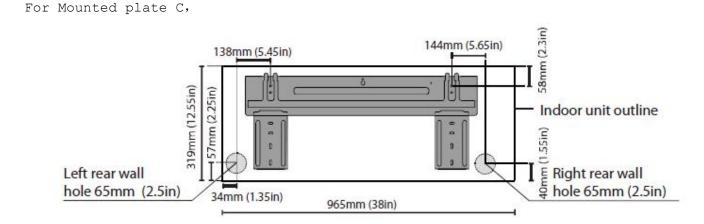

Capacity	Voltage	Eair IDU model	Eair ODU model
9k	115V	CPG009CA(I)	CPG009CA(O)
12k	115V	CPG012CA(I)	CPG012CA(O)
9k	208-230V	CPG009CD(I)	CPG009CD(O)
12k	208-230V	CPG012CD(I)	CPG012CD(O)
18k	208-230V	CPG018CD(I)	CPG018CD(O)
24k	208-230V	CPG024CD(I)	CPG024CD(O)
30k	208-230V	CPG030CD(I)	CPG030CD(0)
36k	208-230V	CPG036CD(0)	CPG036CD(O)
Capacity	Voltage	Eair IDU model	Eair ODU model
9k	115V	CPG009CA(I)-B	CPG009CA(0)-B
12k	115V	CPG012CA(I)-B	CPG012CA(O)-B
9k	208-230V	CPG009CD(I)-B	CPG009CD(0)-B
12k	208-230V	CPG012CD(I)-B	CPG012CD(0)-B
18k	208-230V	CPG018CD(I)-B	CPG018CD(0)-B
24k	208-230V	CPG024CD(I)-B	CPG024CD(0)-B
Capacity	Voltage	Eair IDU model	Eair ODU model
9k	115V	CPP009CA(I)	CPP009CA (O)
12k	115V	CPP012CA(I)	CPP012CA(O)
9k	208-230V	CPP009CD(I)	CPP009CD(O)
12k	208-230V	CPP012CD(I)	CPP012CD(O)
18k	208-230V	CPP018CD(I)	CPP018CD(O)
24k	208-230V	CPP024CD(I)	CPP024CD(O)
Capacity	Voltage	Eair IDU model	Eair ODU model
9k	115V	CXH009CA(I)	CPP09CA(O)-B
12k	115V	CXH012CA(I)	CPP12CA (O) -B
9k	208-230V	CXH009CD(I)	CPP009CD(O)
12k	208-230V	CXH012CD(I)	CPP012CD(O)
18k	208-230V	CXH018CD(I)	CPP018CD(O)
24k	208-230V	CXH024CD(I)	CPP024CD(O)

2.2 Part names of Indoor/Outdoor units

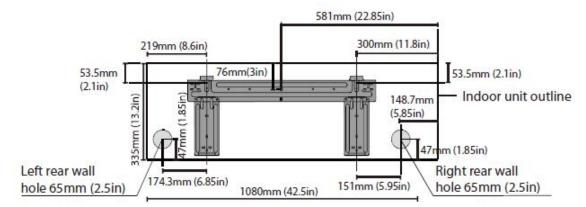
3. Dimension

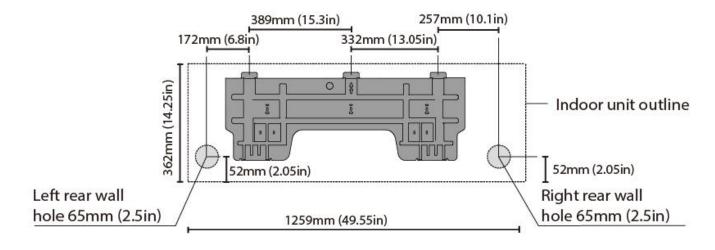

3.1.1 For CPG, CPP Indoor UnitS



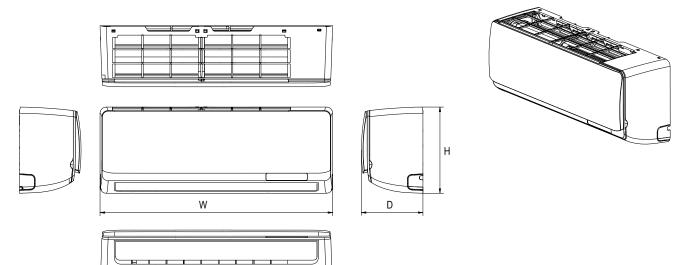

Model	WxDxH (mm)	WxDxH (in)	Mounted plate
CPG 9K	722x187x290	28.43x7.36x11.42	A
CPG 12K CPP 9K,12K	802x189x297	31.57x7.44x11.69	В
CPG 18K	965x215x319	37.99x8.46x12.56	С
CPG 24K CPP 18K,24K	1080x226x335	42.52x8.90x13.19	D
CPG 30K,36K	1259x282x362	49.57x11.10x14.25	E

For Mounted plate A,

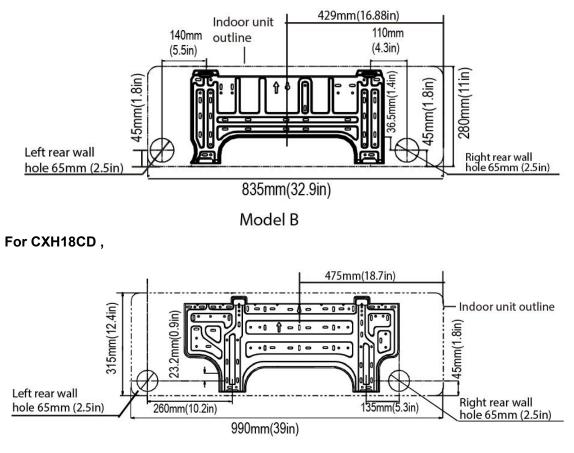

For Mounted plate B,



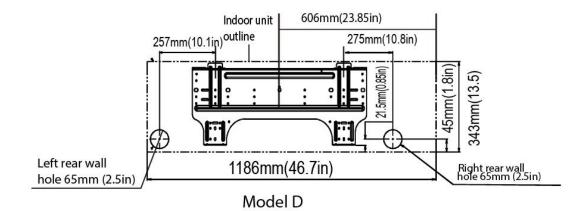
9


For Mounted plate D,

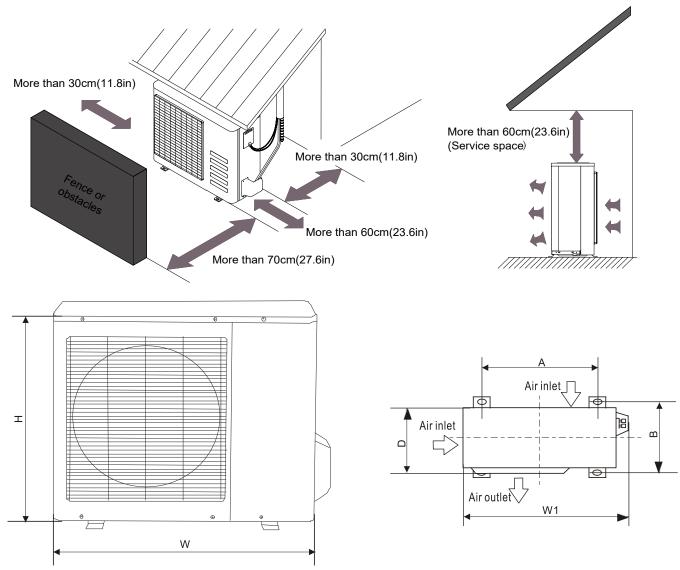
For Mounted plate E,



3.1.2 For CXH indoor units.


Model	W	D	Н
CXH09CD	835mm	198mm	280mm
CXH12CD	(32.9in)	(7.8in)	(11.0in)
CXH18CD	990mm	218mm	315mm
	(39.0in)	(8.6in)	(12.4in)
CXH24CD	1186mm	258mm	343mm
	(46.7in)	(10.2in)	(13.5in)

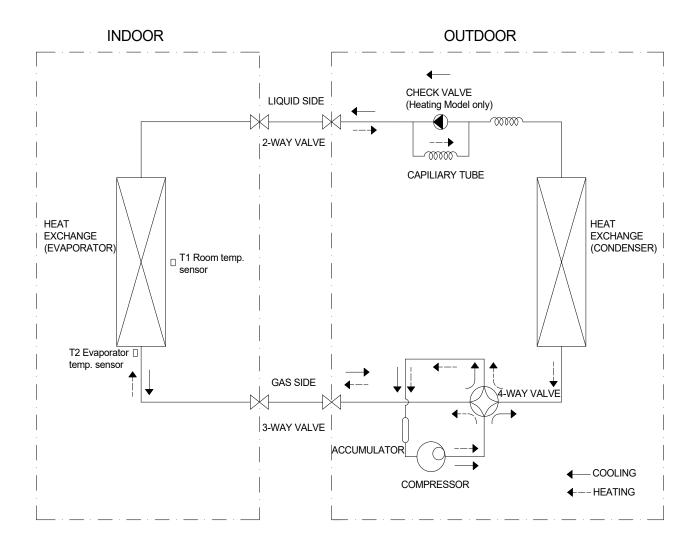
For CXH09CD, CXH12CD,

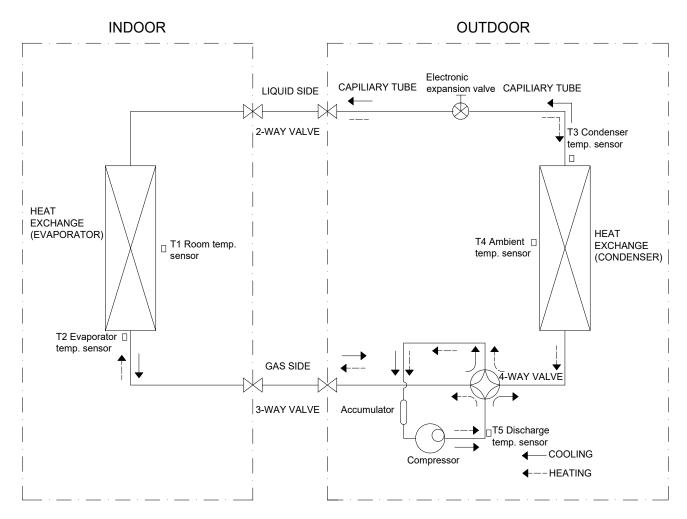


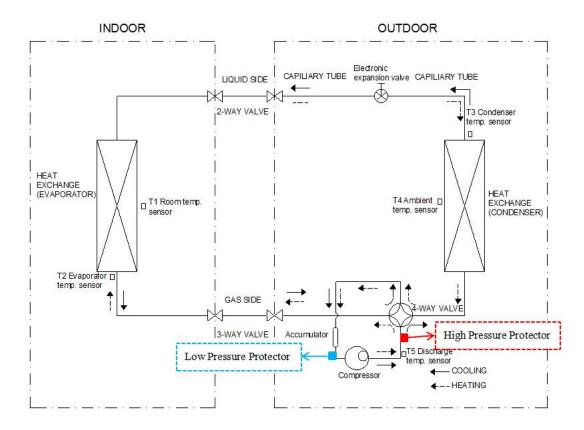
Model C

For CXH24CD,

3.2 Outdoor Unit

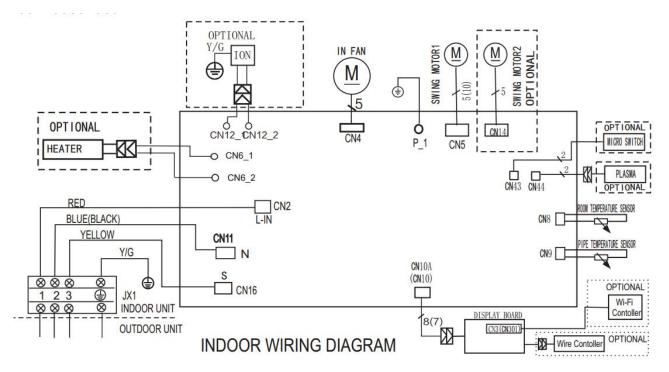


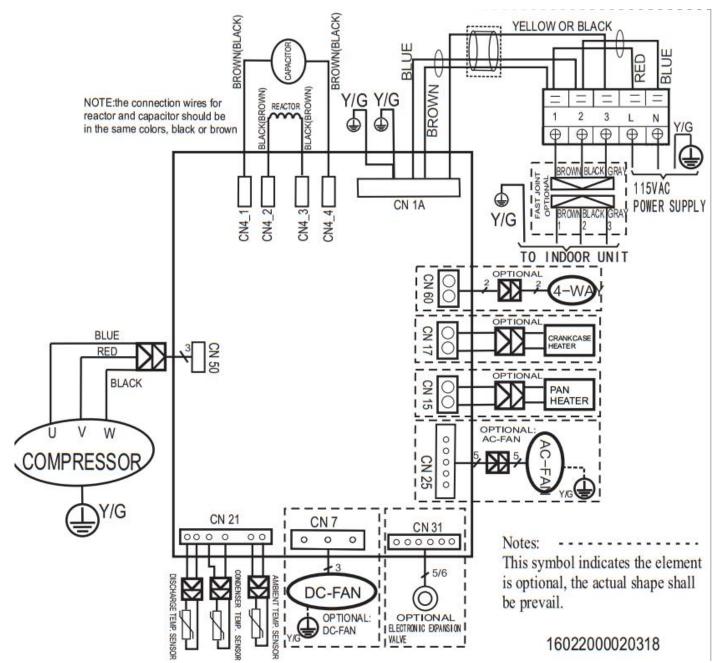

Note: The above drawing is only for reference. The appearance of your units may be different.

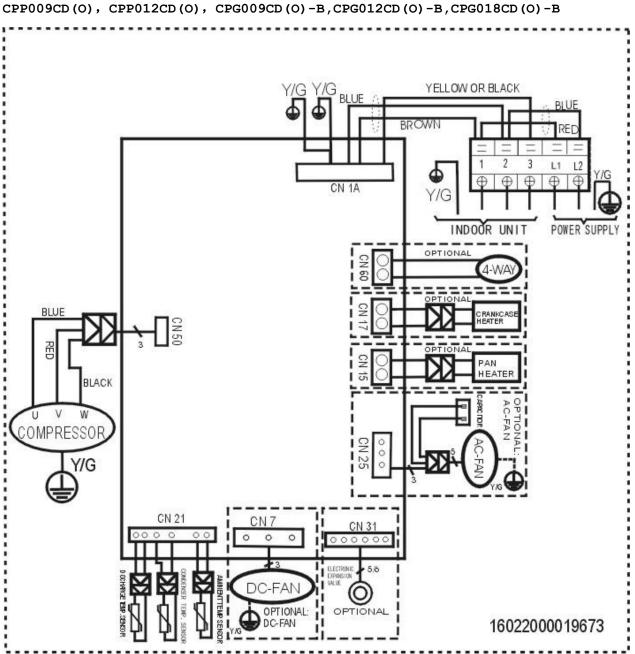

		I	I			
Model	W	D	Н	Wl	А	В
CPG 9K,12K	770 (mm)	300 (mm)	555(mm)	823 (mm)	530 (mm)	290 (mm)
CPP 9K						
	30.31(in)	11.81(in)	21.85(in)	32.40 (in)	20.87(in)	11.42 (in)
	00101(11)		21.00(11)	02.10 (11)	20107(11)	11.12 (11)
CPG 18K	800 (mm)	333(mm)	554(mm)	823 (mm)	530 (mm)	290 (mm)
CPP 12K						
CFF IZK	31.50(in)	13.11(in)	21.81(in)	32.40 (in)	20.87 (in)	11.42(in)
CPG 24k	845(mm)	363(mm)	702(mm)	874 (mm)	549(mm)	325 (mm)
CPP 18K	33.27(in)	14.29(in)	27.64(in)	34.41 (in)	21.61 (in)	12.80 (in)
CPG 30k,36k	946(mm)	420(mm)	810(mm)	1030(mm)	673 (mm)	403 (mm)
CPP 24K	37.24(in)	16.54(in)	31.89(in)	40.55(in)	26.50(in)	15.87(in)

4. Refrigerant Cycle Diagram

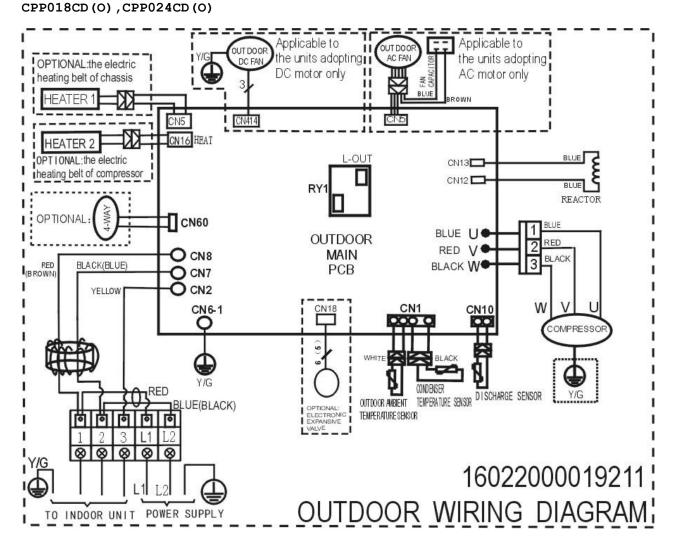
Gold 9,12,18,24k. Platinum 9k-115v, 12k-115v.



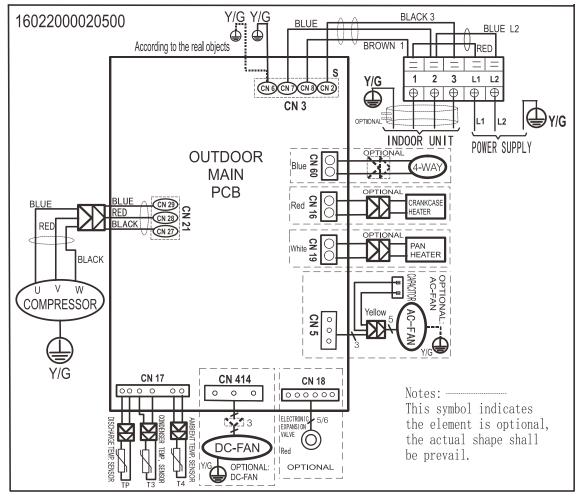



5. Wiring Diagram

5.1 Indoor Unit Wiring Diagram.



CPG009CA(O), CPG012CA(O), CPP009CA(O), CPP012CA(O), CPG009CA(O)-B, CPG012CA(O)-B



CPG009CD(O), CPG012CD(O), CPP009CD(O), CPP012CD(O), CPG009CD(O)-B,CPG012CD(O)-B,CPG018CD(O)-B CPG018CD (O) , CPG024CD (O)

CPP024CD(O)

CPG030CD (O) , CPG036CD (O)

FM1

FAN1

HEAT

H-PRO

L

L-PRO

SV

TP

T3

Τ4

тн

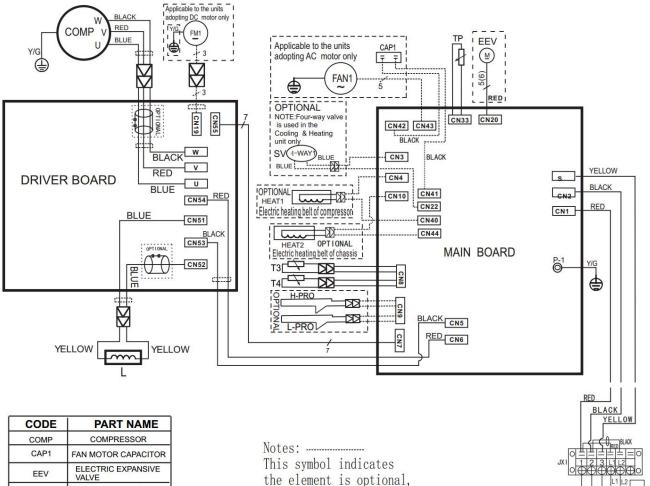
OUTDOOR DC FAN

OUTDOOR AC FAN

CRANKCASE HEATING

HIGH PRESSURE SWITCH PFC INDUCTOR

LOW PRESSURE SWITCH 4-WAY VALVE


EXHAUST TEMPERATURE SENSOR

TEMPERATURE SENSOR OUTDOOR AMBIENT TEMPERATURE SENSOR

TEMPERATURE SENSOR

CONDENSER

HEATSINK

Notes:
This symbol indicates
the element is optional
the actual shape shall
be prevail.

16022000025150

Y/G

TO INDOOR UNIT

POWER SUPPL

(<u>T</u>

6 Installation Details

6.1 Wrench torque sheet for installation

Outsi	.de		Additional	
diame	ter	Torque	tightening	
Ф6.35mm	1/4in	1500N.cm(153kgf.cm)	1600N.cm(163kgf.cm)	
Φ9.52mm	3/8in	2500N.cm(255kgf.cm)	2600N.cm(265kgf.cm)	
¢12.7mm	1/2in	3500N.cm(357kgf.cm)	3600N.cm(367kgf.cm)	
Φ15.9mm	5/8in	4500N.cm(459kgf.cm)	4700N.cm(479kgf.cm)	
Φ19mm	3/4in	6500N.cm(663kgf.cm)	6700N.cm(683kgf.cm)	

6.2 Connecting the cables

The power cord should be selected according to the following specifications sheet.

Appliance Amps	AWG Wire Size
10	18
13	16
18	14
25	12
30	10

The cable size and the current of the fuse or

switch are determined by the maximum current indicated on the nameplate which located on the side panel of the unit. Please refer to the nameplate before selecting the cable, fuse and switch.

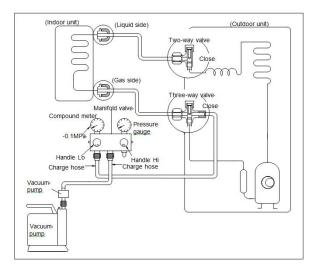
6.3 Pipe length and the elevation

	Pipe	size
Models	Gas	Liquid
9К	3/8in	1/4in
96	(Ф9.52mm)	(Ф6.35mm)
100 100	1/2in	1/4in
12K,18K	(Φ12.7mm)	(Ф6.35mm)
24K,30K,36K	5/8in (Φ15.9mm)	3/8in
,,		(Ф9.52mm)

Models	Standard length	Max. Elevati	Max. Length	Additional refrigeran
		on	A	t
9K,12K	7.5m (24.6ft)	10m (32.8ft	25m (82.0ft	15g/m (0.16oz/ft)
18K	7.5m (24.6ft)	20m (65.6ft)	30m (98.4ft)	15g/m (0.16oz/ft)
24K	7.5m (24.6ft)	20m (65.6ft)	30m (98.4ft)	30g/m (0.32oz/ft)
30K	7.5m (24.6ft)	25m (82.0ft)	50m (164ft)	30g/m (0.32oz/ft)
36K	7.5m (24.6ft)	30m (82.0ft)	65m (213ft)	30g/m (0.32oz/ft)

6.4 Installation for the first time

Air and moisture in the refrigerant system have undesirable effects as below:

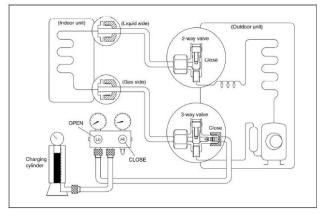

- Pressure in the system rises.
- Operating current rises.
- Cooling or heating efficiency drops.
- Moisture in the refrigerant circuit may freeze and block capillary tubing.

 Water may lead to corrosion of parts in the refrigerant system. Therefore, the indoor units and the pipes between indoor and outdoor units must be leak tested and evacuated to remove gas and moisture from the system.

Gas leak check (Soap water
method):

Apply soap water or a liquid neutral detergent on the indoor unit connections or outdoor unit connections by a soft brush to check for leakage of the connecting points of the piping. If bubbles come out, the pipes have leakage.

1. Air purging with vacuum pump



- Completely tighten the flare nuts of the indoor and outdoor units, confirm that both the 2-way and 3-way valves are set to the closed position.
- 2) Connect the charge hose with the push pin of handle lo to the 3-way valves gas service port..
- Connect the charge hose of handle hi connection to the vacuum pump.
- Fully open the handle Lo of the manifold valve.
- 5) Operate the vacuum pump to evacuate.
- 6) Make evacuation for 30 minutes and check whether the compound meter indicates -0.1Mpa(14.5Psi). If the

meter does not indicate -0.1Mpa(14.5Psi) after pumping 30 minutes, it should be pumped 20 minutes more. If the pressure can't achieve -0.1Mpa(14.5Psi) after pumping 50 minutes, please check if there are some leakage points. Fully close the handle Lo valve of the manifold valve and stop the operation of the vacuum pump. Confirm that the gauge needle does not move (approximately 5 minutes after turning off the vacuum pump).

- 7) Turn the flare nut of the 3-way valves about 45° counterclockwise for 6 or 7seconds after the gas coming out, then tighten the flare nut again. Make sure the pressure display in the pressure indicator is a little higher than the atmosphere pressure. Then remove the charge hose from the 3 way valve.
- 8) Fully open the 2 way value and 3 way value and securely tighten the cap of the 3 way value.

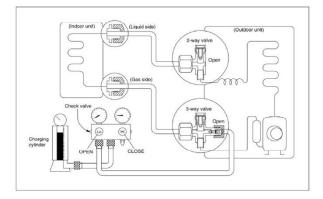
2. Air purging by refrigerant

Procedure:

Confirm that both the 2-way and
 3-way valves are set to the closed position.

2). Connect the charge set and a charging cylinder to the service port of the 3-way valve.

3). Air purging.


Open the valves on the charging cylinder and the charge set. Purge the

air by loosening the flare nut on the 2-way valve approximately 45' for 3 seconds then closing it for 1 minute; repeat 3 times. After purging the air, use a torque wrench to tighten the flare nut on the 2-way valve. 4). Check the gas leakage. Check the flare connections for gas leakage. 5). Discharge the refrigerant. Close the valve on the charging cylinder and discharge the refrigerant by loosening the flare nut on the 2-way valve approximately 45' until the gauge indicates 0.3Mpa(43.5Psi) to 0.5 Mpa(72.5Psi). 6). Disconnect the charge set and the charging cylinder, and set the 2-way and 3-way valves to the open position. Be sure to use a hexagonal wrench to operate the valve stems. 7). Mount the valve stems nuts and the service port cap. Be sure to use a torque wrench to

tighten the service port cap to a torque $18N \cdot m$.

Be sure to check the gas leakage.

6.5 Adding the refrigerant after running the system for many years

Procedure

Connect the charge hose to the
 3-way service port, open the 2-way
 valve and the 3-way valve.

Connect the charge hose to the valve

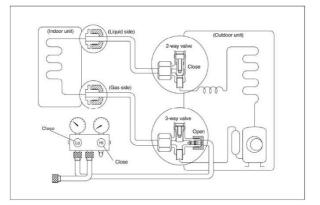
at the bottom of the cylinder. If the refrigerant is R410A, make the cylinder bottom up to ensure liquid charge.

Purge the air from the charge hose.
 Open the valve at the bottom of the cylinder and press the check valve on the charge set to purge the air (be careful of the liquid refrigerant).
 Put the charging cylinder onto the electronic scale and record the weight.

4) Operate the air conditioner at the cooling mode.

5) Open the valves (Low side) on the charge set and charge the system with liquid refrigerant.

6).When the electronic scale displays the proper weight (refer to the gauge and the pressure of the low side), disconnect the charge hose from the 3-way valve's service port


immediately and turn off the air conditioner before disconnecting the hose.

7). Mount the valve stem caps and the service port

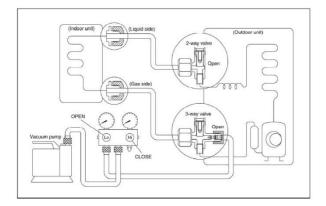
Use torque wrench to tighten the service port cap to a torque of 18N.m. Be sure to check for gas leakage.

6.6 Re-installation while the indoor unit need to be repaired

1. Collecting the refrigerant into the outdoor unit

Procedure

1). Confirm that both the 2-way and 3-way valves are set to the opened position Remove the valve stem caps and confirm that the valve stems are in the opened position. Be sure to use a hexagonal wrench to operate the valve stems. 2). Connect the charge hose with the push pin of handle lo to the 3-way valves gas service port. 3). Air purging of the charge hose. Open the handle Lo valve of the manifold valve slightly to purge air from the charge hose for 5 seconds and then close it quickly. 4). Set the 2-way valve to the close position. 5). Operate the air conditioner at the cooling cycle and stop it when the gauge indicates 0.1Mpa(14.5Psi). 6). Set the 3-way valve to the closed position immediately Do this quickly so that the gauge ends up indicating 0.3Mpa(43.5Psi) to 0.5 Mpa(72.5Psi). Disconnect the charge set, and tighten the 2-way and 3-way valve's stem nuts. Use a torque wrench to tighten the 3-way valves service port cap to a torque of 18N.m. Be sure to check for gas leakage. 2. Air purging by the refrigerant


2). Connect the charge set and a charging cylinder to the service port of the 3-way valve Leave the valve on the charging cylinder closed. 3). Air purging. Open the valves on the charging cylinder and the charge set. Purge the air by loosening the flare nut on the 2-way valve approximately 45' for 3 seconds then closing it for 1 minute; repeat 3 times. After purging the air, use a torque wrench to tighten the flare nut on the 2-way valve. 4). Check the gas leakage Check the flare connections for gas leakage. 5). Discharge the refrigerant. Close the valve on the charging cylinder and discharge the refrigerant by loosening the flare nut on the 2-way valve approximately 45' until the gauge indicates 0.3Mpa(43.5Psi) to 0.5 Mpa(72.5Psi). 6). Disconnect the charge set and the charging cylinder, and set the 2-way and 3-way valves to the open position Be sure to use a hexagonal wrench to operate the valve stems. 7). Mount the valve stems nuts and the service port cap Be sure to use a torque wrench to tighten the service port cap to a torque 18N.m. Be sure to check the gas leakage. 6.7 Re-installation while the outdoor unit need to be repaired

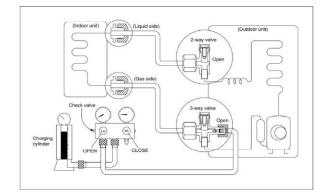
position.

1. Evacuation for the whole system

Procedure:

Confirm that both the 2-way and
 3-way valves are set to the closed

Procedure:


Confirm that both the 2-way and
 3-way valves are set to the opened position.

2). Connect the vacuum pump to 3-way valve's service port.

3). Evacuation for approximately one hour. Confirm that the compound meter indicates -0.1Mpa(14.5Psi).

4). Close the valve (Low side) on the charge set, turn off the vacuum pump, and confirm that the gauge needle does not move (approximately 5 minutes after turning off the vacuum pump).5). Disconnect the charge hose from the vacuum pump.

2. Refrigerant charging

Procedure:

 Connect the charge hose to the charging cylinder, open the 2-way valve and the 3-way valve
 Connect the charge hose which you disconnected from the vacuum pump to the valve at the bottom of the cylinder.
 If the refrigerant is R410A, make the cylinder bottom up to ensure liquid charge.

Purge the air from the charge hose
 Open the valve at the bottom of the cylinder and press the check valve on the charge set to purge the air (be careful of the liquid refrigerant).
 Put the charging cylinder onto the electronic scale and record the weight.

4). Open the valves (Low side) on the charge set and charge the system with liquid refrigerant

If the system cannot be charge with the specified amount of refrigerant, or can be charged with a little at a time (approximately 150g each time) , operating the air conditioner in the cooling cycle; however, one time is not sufficient, wait approximately 1 minute and then repeat the procedure. 5).When the electronic scale displays the proper weight, disconnect the charge hose from the 3-way valve's service port immediately

If the system has been charged with liquid refrigerant while operating the air conditioner, turn off the air conditioner before disconnecting the hose.

6). Mounted the valve stem caps and the service port. Use torque wrench to tighten the

service port cap to a torque of 18N.m. Be sure

to check for gas leakage.

Temperature Mode	Cooling operation	Heating operation	Drying operation
Room temperature	17℃~32℃	0°C ~ 30°C	10℃~32℃
	(62°F~90°F)	(32°F ~ 86°F)	(50℉~90℉)
Outdoor temperature	-15°C~50°C	-15°C∼30°C	0°C~50°C
CPG	(5°F~122°F)	(5°F∼86°F)	(32°F~122°F)
Outdoor temperature	-18°C~50°C	-15°C∼30°C	0°C~50°C
CPG-B	(0°F~122°F)	(5°F∼86°F)	(32°F~122°F)
Outdoor temperature	-25°C∼50°C	-25°C∼50°C	0°C~50°C
CPP	(-13°F∼122°F)	(-13°F∼122°F)	(32°F~122°F)

7. Operation Characteristics

CAUTION:

1. If the air conditioner is used beyond the above conditions, certain safety protection features may come into operation and cause the unit to operate abnormally.

2. The room relative humidity should be less than 80%. If the air conditioner operates beyond this figure, the surface of the air conditioner may attract condensation. Please set the vertical air flow louver to its maximum angle (vertically to the floor), and set HIGH fan mode.

3. The optimum performance will be achieved during this operating temperature zone.

8. Electronic Function

8.1 Abbreviation

T1: Indoor room temperature
T2: Coil temperature of evaporator
T3: Coil temperature of condenser
T4: Outdoor ambient temperature
T5: Compressor discharge
temperature

8.2 Display function

8.2.1 Icon explanation on indoor display board.

feature is cancelled.

Dispalys **, JF**, under deforsting operation.

Dispalys **, cF**, when anti-cold air feature is activated under heating mode.

Dispalys **SC**, during self clean operation (if aplicable).

Dispalys **FP**, under 8°C heating operation (if aplicable).

When ECO function(optional) is

actived,the **" EB** " illuminates gradually one by one as

 $E \rightarrow C \rightarrow O \rightarrow set temperature \rightarrow E$

In one second interval.

Digital display:

Displays the temperature settings when the air conditioner is operational.

Displays the room temperature in FAN mode.

Displays the self-diagnostic codes.

Dispalys **ON**, for three seconds when Timer ON, Fresh, Swing, Turbo or Silence feature is activated.

Dispalys **OF**, for three seconds when Fresh, Swing, Turbo or Silence

NOTE:

A guide on using the infrared remote is not included in this literature package.

8.3 Main Protection

8.3.1 Three minutes delay at restart for compressor

1 minute delay for the 1st time stand-up and 3 minutes delay for others.

8.3.2 Temperature protection of compressor top

The unit will stop working when the compressor top temp. protector cut off, and will restart after the compressor top temp. protector restart.

8.3.3 Temperature protection of compressor discharge

Compressor discharge temp. T5>115 $^{\circ}$ for 5s, compressor stops.

8.3.4 Fan speed is out of control

When indoor fan speed keeps too low (300RPM) for certain time, the unit will stop and the LED will display the failure

8.3.5 Inverter module protection

The Inverter module has a protection function about current, voltage and temperature. If these protections happen, the corresponding code will display on indoor unit and the unit will stop working.

8.3.6 Indoor fan delayed open function

When the unit starts up, the louver will be active immediately and the indoor fan will open 7s later. If the unit runs in heating mode, the indoor fan will be also controlled by anti-cold wind function.

8.3.7 Compressor preheating functions

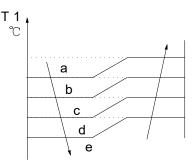
Preheating permitting condition: When T4(outdoor ambient temperature) $<3^{\circ}$ C, the preheating function will be activated.

8.3.8 Sensor protection at open circuit and breaking disconnection.

When there's only one temperature sensor in malfunction , the air conditioner will keep working but show the error code, in case of any emergency use.

When there's more than one temperature sensor in malfunction, the air conditioner will stop working.

8.4 Operation Modes and Functions

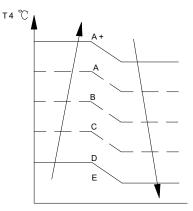

8.4.1 Fan mode

(1) Outdoor fan and compressor stop.
 (2) Temperature setting function is disabled, and no setting temperature is displayed.
 (3) Indoor fan can be set to

high/med/low/auto.

(4) The louver operates same as in cooling mode.

(5) Auto fan:

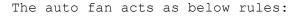

8.4.2 Cooling Mode

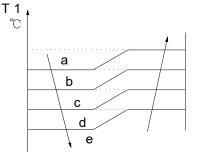
8.4.2.1 Compressor running rules

When $T1-Ts < \Delta T - 2^{\circ}C$, the compressor will stop, when $T1-Ts > \Delta T - 0.5^{\circ}C$, the compressor will be activated. ΔT is the programmed parameter of temperature compensation. When the AC run in mute mode, the compressor will run with low frequency. When the current is more than setting value, the current protection function will be activated, and the compressor will stop.

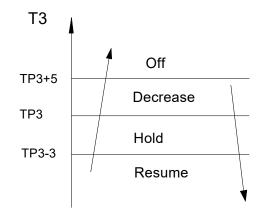
8.4.2.2 Outdoor fan running rules

The outdoor unit will be run at different fan speed according to T4. For different outdoor units, the fan speeds are different.




8.4.2.3 Indoor fan running rules

In cooling mode, indoor fan runs all the time and the speed can be selected as high, medium, low and auto.


Setting fan speed	T1-Td ℃(°F)	Actual fan speed
н		H+ (H+=H+G) H (=H) H- (H==H-G)
м	D	M+ (M+=M+Z) M (M=M) M- (M-=M-Z)
L		L+(L+=L+D) L(L=L) L-(L-=L-D)

The indoor fan is controlled as below:

8.4.2.4 Condenser temperature protection

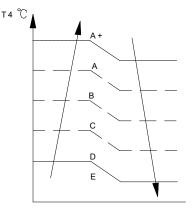
---TP3<T3< TP3+5, the compressor frequency will decrease to the lower level until to F1 and then runs at F1.If TP3-3<T3< TP3, the compressor will keep running at the current frequency.

---T3< TP3-3, the compressor will not limit the frequency and resume to the former frequency.

---T3> TP3+5 for 5 seconds, the compressor will stop until T3< TP3-3.

8.4.2.5 Evaporator temperature protection

When Evaporator temperature temp.is less than setting value, the compressor will stop.

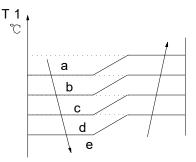

8.4.3 Heating Mode

8.4.3.1 Compressor running rules

When T1-Ts>- Δ T, the compressor will stop, when T1-T_s< Δ T-1.5, the compressor will be on. Δ T is the programmed parameter of temperature compensation. When the AC run in mute mode, the compressor will run with low frequency. When the current is more than setting value, the current protection function will be activated and the compressor will stop.

8.4.3.2 Outdoor fan running rules

The outdoor unit will be run at different fan speed according to T4. For different outdoor units, the fan speeds are different.


8.4.3.3 Indoor fan running rules

When the compressor is on, the indoor fan can be set to high/med/low/auto. And the anti-cold wind function has the priority.

Setting fan speed	T1-Td ℃(°F)	Actual fan speed
н		H+ (H+=H+G) H (=H) H- (H-=H-G)
м		M+ (M+=M+Z) M (M=M) M- (M-=M-Z)
L		L+(L+=L+D) L(L=L) L-(L-=L-D)

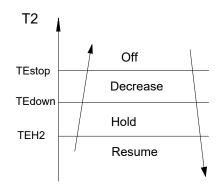
The indoor fan is controlled as below:

Auto fan action in heating mode:

8.4.3.4 Defrosting mode

AC will enter the defrosting mode according to the value of temp. of T3 and the value range of temp. change of T3 and also the compressor running time. During the defrosting mode, the compressor keep running, indoor and outdoor motor will stop, defrost lamp of the indoor unit will be lighted

"JF." Will be displayed.


If any one of the following items is satisfied, the defrosting will finish and the machine will turn to normal heating mode.

----T3 rises to be higher than $\texttt{TCDE1}^{\circ}\texttt{C}$.

----T3 keeps to be higher than TCDE2 $^{\circ}\mathrm{C}$ for 80 seconds.

----The machine has run for 15 minutes in defrosting mode.

8.4.3.5 Evaporator coil temperature protection

Off: Compressor stops.

Decrease: Decrease the running frequency to the lower level. Hold: Keep the current frequency. Resume: No limitation for frequency.

8.4.4 Auto-mode

This mode can be chosen with remote controller and the setting temperature can be changed between $17^{\circ}C\sim30^{\circ}C$

In auto mode, the machine will choose cooling, heating or fan-only mode according to ΔT (ΔT =T1-Ts).

∆T=T1-Ts	Running mode
∆T>2°C	Cooling

-2≤∆T≤2℃	Fan-only
∆T<-2°C	Heating

Indoor fan will run at auto fan of the relevant mode.

The louver operates same as in relevant mode.

If the machine switches mode between heating and cooling, the compressor will keep stopping for 15 minutes and then choose mode according to T1-Ts. If the setting temperature is modified, the machine will choose running function again.

8.4.5 Drying mode

Indoor fan speed is fixed at breeze and can't be changed. The louver angle is the same as in cooling mode. All protections are active and the same as that in cooling mode.

8.4.6 Forced operation function

Forced cooling mode:

The compressor and outdoor fan keep running and the indoor fan runs at low speed. After running for 30 minutes, AC will turn to auto mode with 24° C setting temperature.

Forced auto mode:

The action of forced auto mode is the same as normal auto mode with 24 $^{\circ}\mathrm{C}$ setting temperature.

When AC receives signals, such as switch on, switch off, timer on, timer off, mode setting, fan speed setting, sleeping mode setting, follow me setting, it will quit the forced operation.

8.4.7 Timer function

8.4.7.1 Timing range is 24 hours. 8.4.7.2 Timer on. The machine will turn on automatically when reaching the setting time. 8.4.7.3 Timer off. The machine will turn off automatically when reaching the setting time.

8.4.7.4 Timer on/off. The machine will turn on automatically when reaching the setting "on" time, and then turn off automatically when reaching the setting "off" time.

8.4.7.5 Timer off/on. The machine will turn off automatically when reaching the setting "off" time, and then turn on automatically when reaching the setting "on" time.

8.4.7.6 The timer function will not change the AC current operation mode. Suppose AC is off now, it will not start up firstly after setting the "timer off" function. And when reaching the setting time, the timer LED will be off and the AC running mode has not been changed.

8.4.7.7 The setting time is relative time.

8.4.7.8 The AC will quit the timer function when it has malfunction.

8.4.8 Economy function

8.4.8.1 The sleep function is available in cooling, heating or auto mode.

8.4.8.2. Operation process in sleep mode is as follow:

When cooling, the setting temperature rises 1° (be lower than 30°) every one hour, 2 hours later the setting temperature stops rising and the indoor fan is fixed at low speed.

When heating, the setting temperature decreases 1° (be higher than 17°) every one hour, 2 hours later the setting temperature stops rising and indoor fan is fixed at low speed. (Anti-cold wind function has the priority).

8.4.8.3 Operation time in sleep mode is 7 hours. After 7 hours the AC quits this mode and turns off. 8.4.8.4 Timer setting is available

8.4.9 Auto-Restart function

The indoor unit is equipped with auto-restart function, which is carried out through an auto-restart module. In case of a sudden power failure, the module memorizes the setting conditions before the power failure. The unit will resume the previous operation setting (not including swing function) automatically after 3 minutes when power returns.

If the memorization condition is forced cooling mode, the unit will run in cooling mode for 30 minutes and turn to auto mode as $24^{\circ}C$ setting temp.

If AC is off before power off and AC is required to start up now, the compressor will have 1 minute delay when power on. Other conditions, the compressor will have 3 minutes delay when restarts.

8.4.10 Refrigerant Leakage Detection

With this new technology, the display area will show "EC" when the outdoor unit detects refrigerant leakage. This function is only available in cooling mode.

8.4.11 Louver Position Memory Function

When starting the unit again after shutting down, its louver will restore to the angle originally set by the user, but the precondition is that the angle must be within the allowable range, if it exceeds, it will memorize the maximum angle of the louver. During operation, if the power fails or the end user shuts down the unit in the turbo mode, the louver will restore to the default angle.

8.4.12 8°C Heating(optional)

In heating operation, the preset temperature of the air conditioner can be as lower as 8° , which keeps the room temperature steady at 8° and prevents household things freezing when the house is unoccupied for a long time in severe cold weather.

8.4.13 Self clean(optional)

For heat pump models which are provided with this function, after running in cooling or drying mode, if the user press "Self Clean" button on remote controller, firstly, indoor unit runs in fan only mode for a while, then low heat operation and finally runs in fan only again. This function can keep the inside of indoor unit dry and prevent breeding of mold.

8.4.14 Follow me (optional)

 If the indoor PCB receives the signal which

results from pressing the FOLLOW ME button on remote controller, the buzzer will emit a sound and this indicates the follow me function is initiated. But when the indoor PCB receives signal which sent from remote controller every 3 minutes, the buzzer will not respond. When the unit is running with follow me function, the PCB will control the unit according to the temperature from follow me signal, and the temperature collection function of room temperature sensor will be shielded, but the error detective function of room temperature sensor will be still valid.

 When the follow me function is available,

the PCB will control the unit according to the room temperature

from the remote controller and the setting temperature.

The PCB will take action to the mode

change information from remote controller signal, but it will not affected by the setting temperature. 4) When the unit is running with

follow me

function, if the PCB doesn't receive any signal from remote controller for 7 minutes or pressing FOLLOW ME button again, the follow me function will be turned off automatically, and the temperature will control the unit according to the room temperature detected from its own room temperature sensor and setting temperature.

8.4.15 Silence operation(optional)

Press the "silence" button on remote controller to initiate SILENCE function. When the Silence function is activated, the compressor running frequency will keep lower than F2 and the indoor unit will bring faint breeze, which will reduce the noise to the lowest level and create a quiet and comfortable room for you.

8.4.16 Point check function

Press the LED DISPLAY or LED or MUTE button of the remote controller three times, and then press the AIR DIRECTION or SWING button three times in ten seconds, the buzzer will keep ring for two seconds. The air conditioner will enter into the information enquiry status. You can press the LED DISPLAY or AIR DIRECTION button to check the next or front item's information.

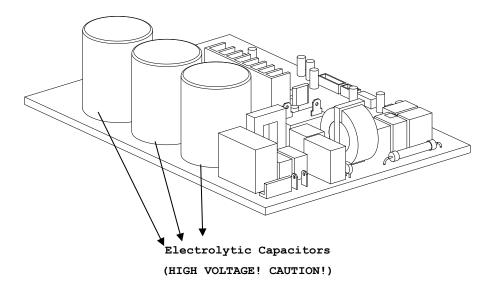
When the AC enter the "information enquiry" status, it will display the code

Enquiry information	Displaying	Meaning
	code	
Т1	Т1	T1 temp.
Т2	Т2	T2 temp.
ТЗ	Т3	T3 temp.
Т4	Т4	T4 temp.
T2B	Tb	T2B temp.
TP	TP	TP temp.
ТН	ТН	TH temp.
Targeted Frequency	FT	Targeted Frequency
Actual Frequency	Fr	Actual Frequency
Indoor fan speed	IF	Indoor fan speed
Outdoor fan speed	OF	Outdoor fan speed
EXV opening angle	LA	EXV opening angle
Compressor continuous running	СТ	Compressor
time		continuous running
		time
Causes of compressor stop.	ST	Causes of

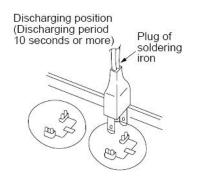
name in 2 seconds, the details are as follows.

		compressor stop.
Reserve	AO	
Reserve	A1	
Reserve	b 0	
Reserve	b 1	
Reserve	b 2	
Reserve	b 3	
Reserve	b 4	
Reserve	b 5	
Reserve	b 6	
Reserve	dL	
Reserve	Ac	
Reserve	UO	
Reserve	Tđ	

When the AC enter into the information enquiry status, it will display the code value in the next 25s, the details are as follows.


Enquiry	Display	Meaning	Remark
informati	value		
on			
т1,т2,т3,	-1F,-1E,-1d,	-25,-24,-23,-22	1. All the displaying temperature
т4,	-1c,-1b,-1A	,-21,-20	is actual value.
T2B, TP, TH	-19-99	-19-99	2. All the temperature is $^\circ C$ no
,	A0,A1,A9	100,101,109	matter what kind of remote
Targeted	b0,b1,b9	110,111,119	controller is used.
Frequency	c0,c1,c9	120,121,129	3. T1,T2,T3,T4,T2B display
,	d0,d1,d9	130,131,139	range:-25~70,
Actual	E0,E1,E9	140,141,149	TP display range:-20~130.
Frequency	F0,F1,F9	150,151,159	4. Frequency display range:
			0~159HZ.
			5. If the actual value exceeds the
			range, it will display the maximum
			value or minimum value.
Indoor fan	0	OFF	
speed	1,2,3,4	Low speed, Medium	For some big capacity motors.
/Outdoor		speed, High	
fan speed		speed, Turbo	
	14-FF	Actual fan	For some small capacity motors,
		speed=Display	display value is from
		value turns to	14-FF(hexadecimal), the
		decimal value and	corresponding fan speed range is
		then multiply 10.	from 200-2550RPM.
		The unit is RPM.	
EXV	0-FF	Actual EXV	

opening		opening	
angle		value=Display	
		value turns to	
		decimal value and	
		then multiply 2.	
Compresso	0-FF	0-255 minutes	If the actual value exceeds the
r			range, it will display the maximum
continuou			value or minimum value.
s running			
time			
Causes of	0-99	For the detailed	Decimal display
compresso		meaning, please	
r stop.		consult with	
		engineer	
Reserve	0-FF		


9. Troubleshooting

Safety

Electricity power is still kept in capacitors even the power supply is shut off. Do not forget to discharge the electricity power in capacitor.

For other models, please connect discharge resistance (approx.100 Ω 40W) or soldering iron (plug) between +, - terminals of the electrolytic capacitor on the contrary side of the outdoor PCB.

Note: The picture above is only for reference. The plug of your side may be different.

9.1 Indoor Unit Error Display

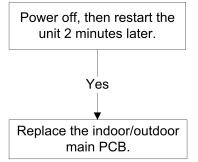
Operation	Timer	Displa		
lamp	lamp	у	LED STATUS	
		E0	Indeen unit EEDDOM nonometer enner	
☆ 1 time	X	EU	Indoor unit EEPROM parameter error	
$\cancel{3}$ 2 times	Х	E1	Indoor / outdoor units communication error	
☆ 3 times	Х	E2	Zero-crossing signal detection error	
$\cancel{3}$ 4 times	Х	E3	Indoor fan speed has been out of control	
☆ 5 times	Х	E4	Indoor room temperature sensor T1 open circuit or short circuit	
☆ 6 times	Х	E5	Evaporator coil temperature sensor T2 open circuit or short circuit	
☆ 7 times	Х	EC	Refrigerant leakage detection	
☆ 1 times	0	FO	Overload current protection	
$\stackrel{\wedge}{\propto}$ 2 times	0	Fl	Outdoor ambient temperature sensor T4 open circuit or short circuit	
☆ 3 times	0	F2	Condenser coil temperature sensor T3 open circuit or short circuit	
$\cancel{3}$ 4 times	0	F3	Compressor discharge temperature sensor T5 open circuit or short circuit	
☆ 5 times	0	F4	Outdoor unit EEPROM parameter error	
$\cancel{3}$ 6 times	0	F5	Outdoor fan speed has been out of control	
$\stackrel{\wedge}{\sim}$ 1 times	${\sim}$	PO	IPM malfunction or IGBT over-strong current protection	
$\cancel{3}$ 2 times		P1	Over voltage or over low voltage protection	
☆ 3 times	¥	P2	High temperature protection of compressor top diagnosis and solution(only for 9k,12k models)	
$\cancel{3}$ 4 times	$\stackrel{\wedge}{\simeq}$	P3*	Outdoor ambient temperature too low.	
☆ 5 times	$\stackrel{\sim}{\simeq}$	P4	Inverter compressor drive error	
☆ 6 times	${\propto}$	Р5	Indoor units mode conflict (multi-zone ONLY)	
☆ 7 times	$\overrightarrow{\mathbf{x}}$	P6	Pressure protection	
O(light) X(off) ☆(flash)				

O(light) X(off) ☆(flash)

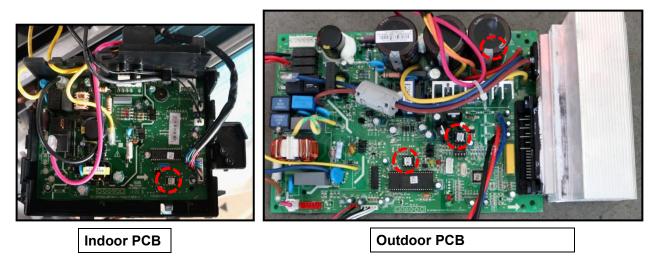
*P3

1) In heating mode, when the outdoor temperature is lower than -25 for 1 hour, the indoor unit display error code P3.

2) If the OUTDOOR temperature is higher than -22c for 10 minutes and compressor stop for 1 hour OR outdoor temperature is higher than -5C for 10 minutes, then the unit will return to work.


9.2 Outdoor unit error display(not available)

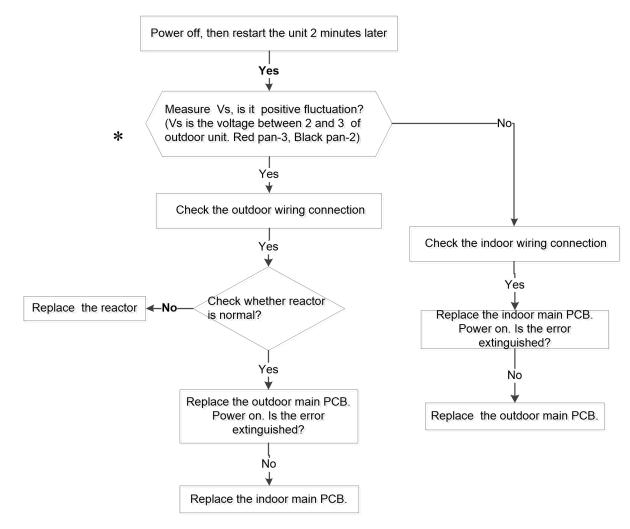
9.3 Diagnosis and Solution


J.J.I BERGIN PARAMETER CITOR ARAGIOSTS and Sofacton (20,11)		
Error Code	E0/F4	
Malfunction decision	Indoor or outdoor PCB main chip does not receive	
conditions	feedback from EEPROM chip.	
Supposed causes	• Installation mistake	
	• PCB faulty	

9.3.1 EEPROM parameter error diagnosis and solution(E0/F4)

Trouble shooting:

EEPROM: a read-only memory whose contents can be erased and reprogrammed using a pulsed voltage. For the location of EEPROM chip, please refer to the below photos.



Note: The two photos above are only for reference, it's may be not same totally with the ones on your side.

9.3.2 Indoor / outdoor unit's communication diagnosis and solution(E1)

Error Code	El	
Malfunction	Indoor unit does not receive the feedback from outdoor	
decision	unit during 110 seconds and this condition happens four	
conditions	times continuously.	
Supposed causes	• Wiring mistake	
	• Indoor or outdoor PCB faulty	

Trouble shooting:

 \star Vs is the voltage between S and N (for 115V 2014 models) \star Vs is the voltage between 2 and 3 (for 2015 models)

Remark:

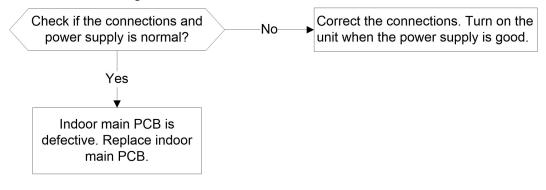
Use a multimeter to test the DC voltage between 2 port and 3 port of outdoor unit. The red pin of multimeter connects with 2 port while the black pin is for 3 port.

When AC is normal running, the voltage will move alternately between -50V to 50V.

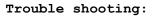
If the outdoor unit has malfunction, the voltage will move alternately with positive value.

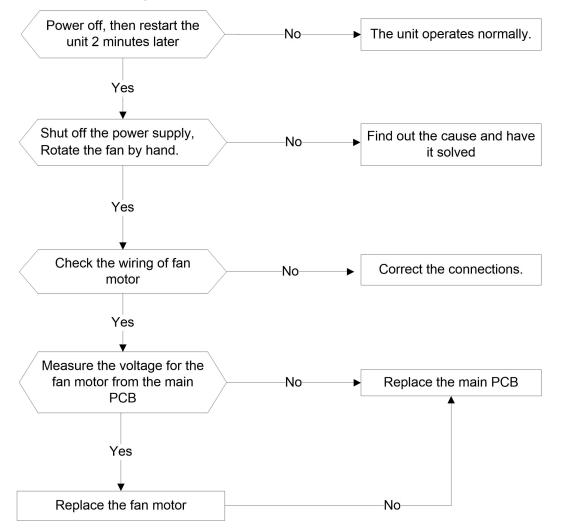
While if the indoor unit has malfunction, the voltage will be a certain value.

Remark:


Use a multimeter to test the resistance of the reactor which does not connect with capacitor.

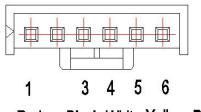
The normal value should be around zero ohm. Otherwise, the reactor must have malfunction and need to be replaced.


9.3.3 Zero crossing detection error diagnosis and solution (E2)


Error Code	E2	
Malfunction	When PCB does not receive zero crossing signal feedback	
decision	for 4 minutes or the zero crossing signal time interval	
conditions	is abnormal.	
Supposed causes	• Connection mistake	
	• PCB faulty	

9.3.4 Fan speed has been out of control diagnosis and solution(E3)

Error Code	E3
Malfunction decision	When indoor fan speed keeps too low (300RPM) for certain
conditions	time, the unit will stop and the LED will display the
	failure.
Supposed causes	• Wiring mistake
	• Fan ass'y faulty
	• Fan motor faulty
	• PCB faulty



Index 1:

1:Indoor or Outdoor DC Fan Motor(control chip is in fan motor)

Power on and when the unit is in standby, measure the voltage of pin1-pin3, pin4-pin3 in fan motor connector. If the value of the voltage is not in the range showing in below table, the PCB must has problems and need to be replaced.

Red Black White Yellow Blue

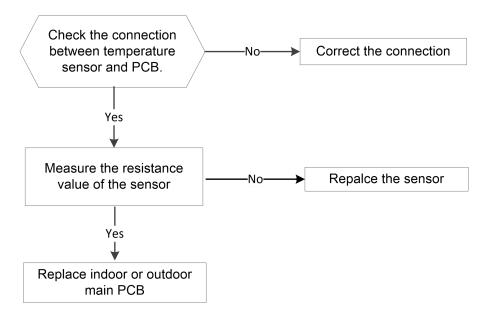
DC motor voltage input and output(voltage: 220-240V~)

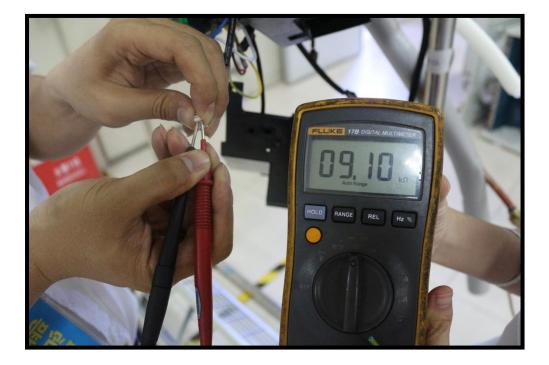
NO.	Color	Signa l	Voltage
1	Red	Vs/Vm	280V~380V
2			
3	Black	GND	0V
4	White	Vcc	14-17.5V
5	Yello w	Vsp	0~5.6V
6	Blue	FG	14-17.5V

DC motor voltage input and output(voltage :115V~)

NO.	Color	Signa l	Voltage
1	Red	Vs/Vm	140V~190V
2			
3	Black	GND	0V
4	White	Vcc	14-17.5V
5	Yello W	Vsp	0~5.6V
6	Blue	FG	14-17.5V

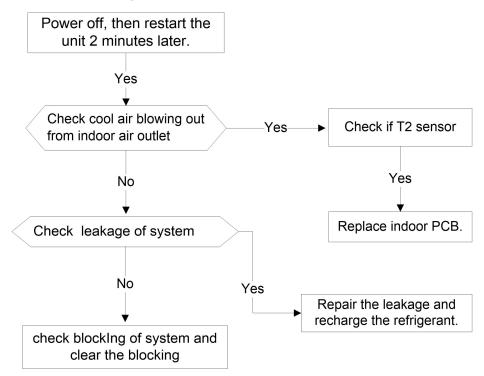
2. Outdoor DC Fan Motor (control chip is in outdoor PCB)


Power on ,and check if the fan can run normally, if the fan can run normally, the PCB must has problems and need to be replaced, If the fan can't run normally, measure the resistance of each two pins. If the resistance is not equal to each other, the fan motor must have problems and need to be replaced, otherwise the PCB must has problems and need to be replaced.


3. Indoor AC Fan Motor

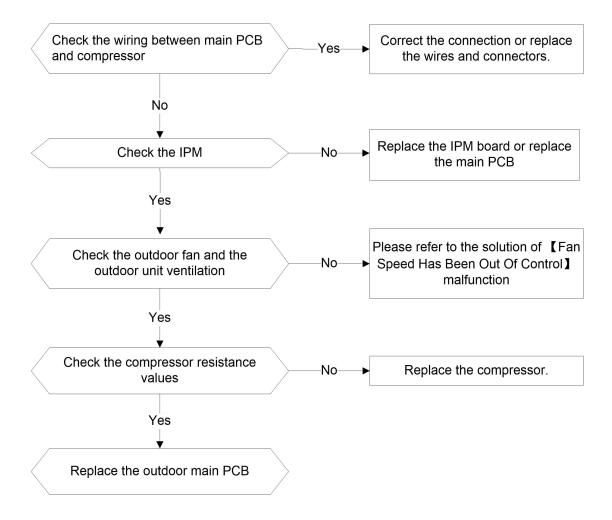
Power on and set the unit running in fan mode at high fan speed. After running for 15 seconds, measure the voltage of pin1 and pin2. If the value of the voltage is less than 100V(208~240V power supply) or 50V(115V power supply), the PCB must has problems and need to be replaced.

9.3.5 Open circuit or short circuit of temperature sensor diagnosis and solution(E5)

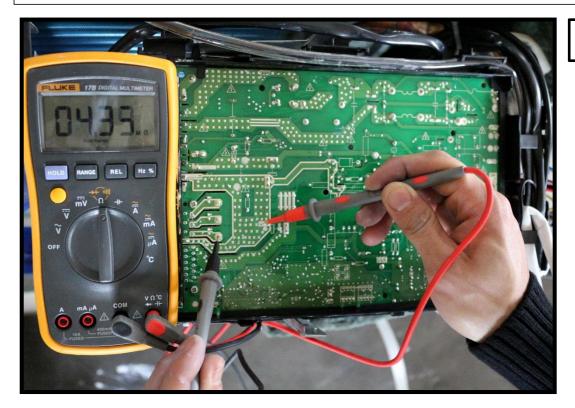

Error Code	E4/E5/F1/F2/F3	
Malfunction decision conditions	If the sampling voltage is lower than 0.06V or higher than 4.94V, the LED will display the failure.	
Supposed causes	Wiring mistakeSensor faulty	

9.3.6 Refrigerant Leakage Detection diagnosis and solution(EC)

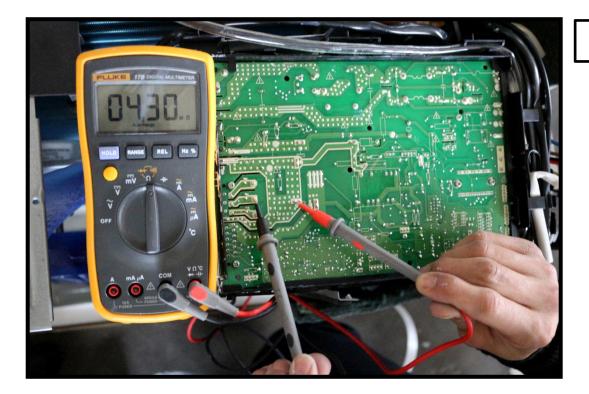
Error Code	EC	
Malfunction decision	Define the evaporator coil temp.T2 of the compressor	
conditions	just starts running as Tcool.	
	In the beginning 5 minutes after the compressor starts	
	up, if T2 <tcool-2°c(tcool-35.6°f) does="" keep<="" not="" th=""></tcool-2°c(tcool-35.6°f)>	
	continuous 4 seconds and this situation happens 3	
	times, the display area will show "EC" and AC will turn	
Supposed causes	• T2 sensor faulty	
	• Indoor PCB faulty	
	• System problems, such as leakage or blocking.	

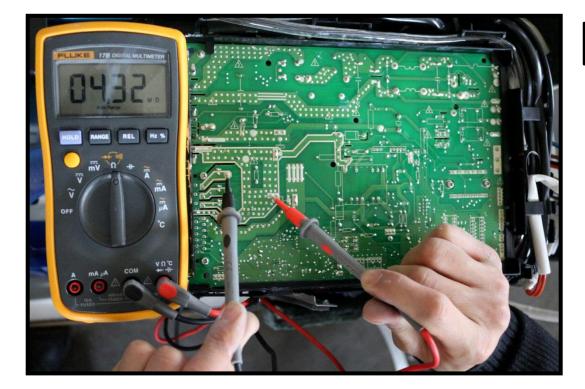

9.3.7 Overload current protection diagnosis and solution(F0)

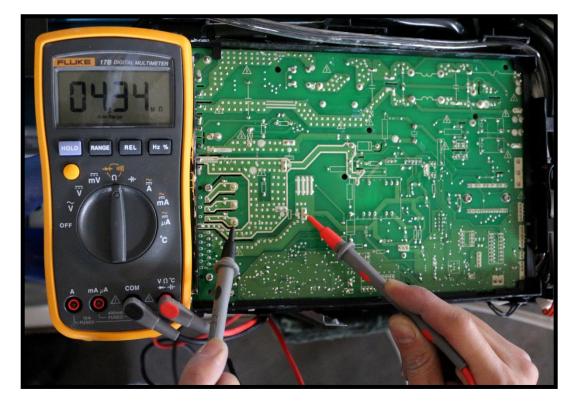
Error Code	FO	
Malfunction decision conditions	An abnormal current rise is detected by checking the specified current detection circuit.	
Supposed causes	 Power supply problems. System blockage PCB faulty Wiring mistake Compressor malfunction 	



9.3.8 IPM malfunction or IGBT over-strong current protection diagnosis and solution(P0)


Error Code	P0
Malfunction decision	When the voltage signal that IPM send to compressor
conditions	drive chip is abnormal, the display LED will show "PO" $$
Supposed causes	• Wiring mistake
	• IPM malfunction
	 Outdoor fan ass'y faulty
	• Compressor malfunction
	• Outdoor PCB faulty


Note: The photos below are only for reference, it's may be not same totally with the ones on your side.



P-U

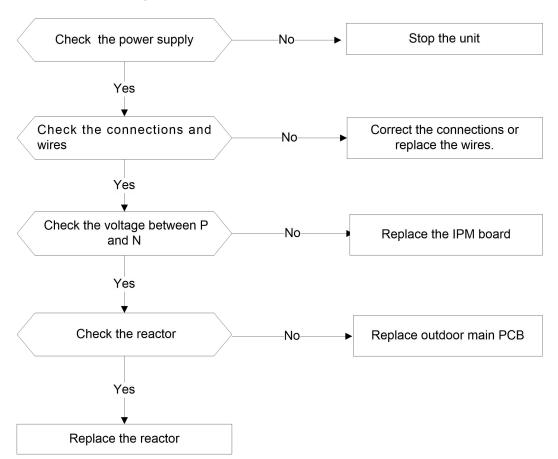
P-V

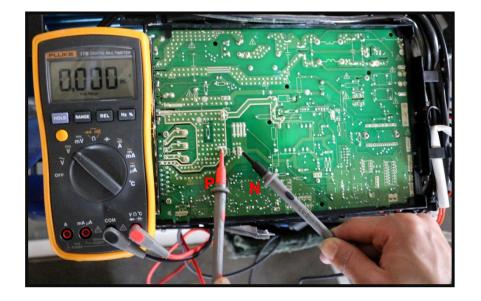
N-U

P-W

Hz % REL 11 स्तरनं ल

N-W

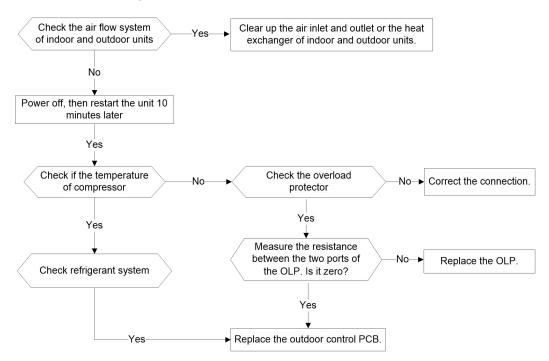

N-V


53

9.3.9 Over voltage or too low voltage protection diagnosis and solution(P1)

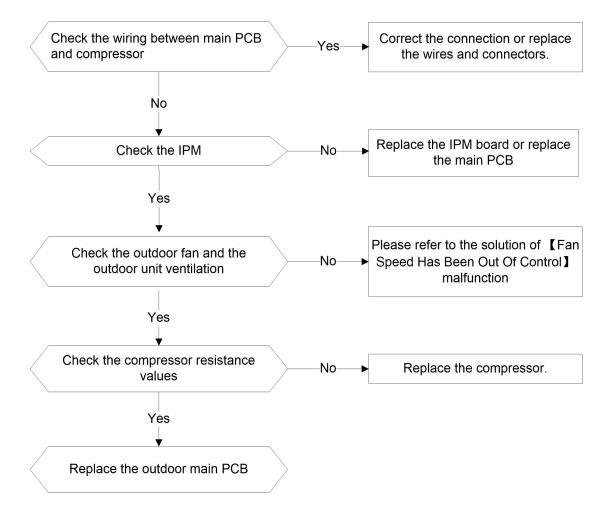
Error Code	P1
Malfunction decision	An abnormal voltage rise or drop is detected by checking
conditions	the specified voltage detection circuit.
Supposed causes	• Power supply problems.
	• System leakage or block
	• PCB faulty

Trouble shooting:



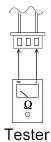
Remark:

Measure the DC voltage between P and N port. The normal value should be around 310V.


9.3.10 High temperature protection of compressor top diagnosis and solution (P2)

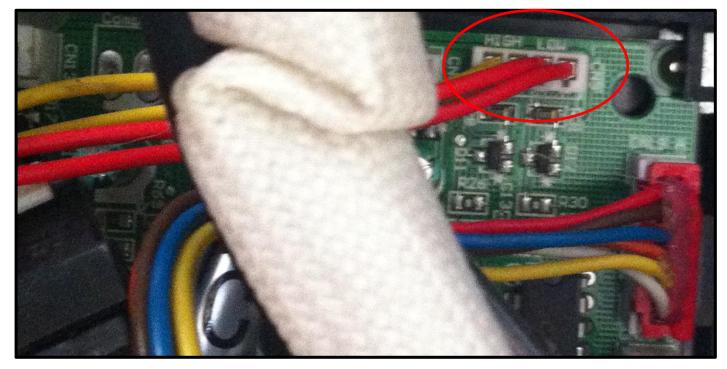
Error Code	P2					
Malfunction decision	If the sampling voltage is not $5V$, the LED will display					
conditions	the failure.					
Supposed causes	• Power supply problems.					
	• System leakage or block					
	• PCB faulty					

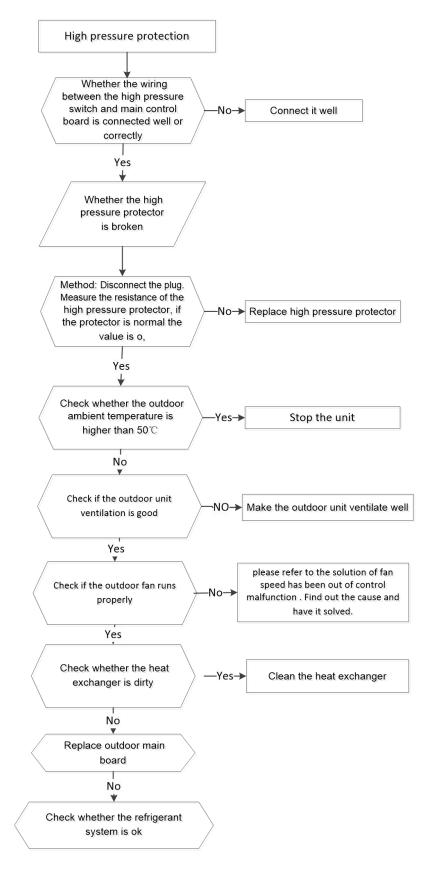
9.3.11 Inverter compressor drive error diagnosis and solution(P4)


Error Code	P4						
Malfunction decision	An abnormal inverter compressor drive is detected by						
conditions	a special detection circuit, including communication						
	signal detection, voltage detection, compressor						
	rotation speed signal detection and so on.						
Supposed causes	• Wiring mistake						
	• IPM malfunction						
	 Outdoor fan ass'y faulty 						
	• Compressor malfunction						
	• Outdoor PCB faulty						

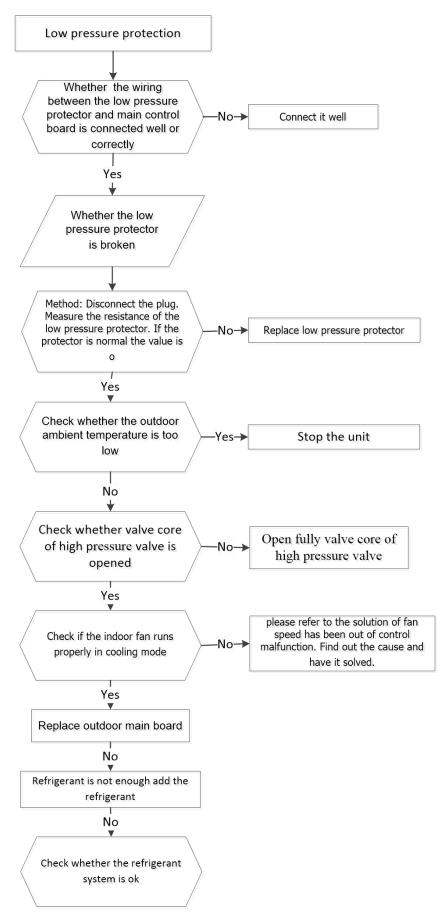
Main parts check

1. Temperature sensor checking


Disconnect the temperature sensor from PCB, measure the resistance value with a tester.


Temperature sensors. Room temp.(T1) sensor, Indoor coil temp.(T2) sensor, Outdoor coil temp.(T3) sensor, Outdoor ambient temp.(T4) sensor, Compressor discharge temp.(T5) sensor. Measure the resistance value of each winding by using the multi-meter.

9.3.12 (pressure protection) error diagnosis and solution.


Error Code	IDU ERROR P6
Malfunction decision conditions	If the sampling voltage is not 5V, the LED will display the failure.
Supposed causes	 Wiring mistake Over load protector faulty System block Outdoor PCB faulty

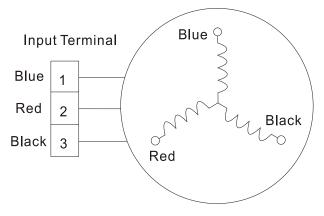
High Pressure Protection

Low pressure protection.

Appen		Temperatu	ire se	nsor .	Resistanc	e vali	le Tab	Te Tor TI	,12,1	3,14	(C - K)
°C	°F	K Ohm	°C	°F	K Ohm	°C	°F	K Ohm	°C	°F	K Ohm
-20	-4	115.266	20	68	12.6431	60	140	2.35774	100	212	0.62973
-19	-2	108.146	21	70	12.0561	61	142	2.27249	101	214	0.61148
-18	0	101.517	22	72	11.5	62	144	2.19073	102	216	0.59386
-17	1	96.3423	23	73	10.9731	63	145	2.11241	103	217	0.57683
-16	3	89.5865	24	75	10.4736	64	147	2.03732	104	219	0.56038
-15	5	84.219	25	77	10	65	149	1.96532	105	221	0.54448
-14	7	79.311	26	79	9.55074	66	151	1.89627	106	223	0.52912
-13	9	74.536	27	81	9.12445	67	153	1.83003	107	225	0.51426
-12	10	70.1698	28	82	8.71983	68	154	1.76647	108	226	0.49989
-11	12	66.0898	29	84	8.33566	69	156	1.70547	109	228	0.486
-10	14	62.2756	30	86	7.97078	70	158	1.64691	110	230	0.47256
-9	16	58.7079	31	88	7.62411	71	160	1.59068	111	232	0.45957
-8	18	56.3694	32	90	7.29464	72	162	1.53668	112	234	0.44699
-7	19	52.2438	33	91	6.98142	73	163	1.48481	113	235	0.43482
-6	21	49.3161	34	93	6.68355	74	165	1.43498	114	237	0.42304
-5	23	46.5725	35	95	6.40021	75	167	1.38703	115	239	0.41164
-4	25	44	36	97	6.13059	76	169	1.34105	116	241	0.4006
-3	27	41.5878	37	99	5.87359	77	171	1.29078	117	243	0.38991
-2	28	39.8239	38	100	5.62961	78	172	1.25423	118	244	0.37956
-1	30	37.1988	39	102	5.39689	79	174	1.2133	119	246	0.36954
0	32	35.2024	40	104	5.17519	80	176	1.17393	120	248	0.35982
1	34	33.3269	41	106	4.96392	81	178	1.13604	121	250	0.35042
2	36	31.5635	42	108	4.76253	82	180	1.09958	122	252	0.3413
3	37	29.9058	43	109	4.5705	83	181	1.06448	123	253	0.33246
4	39	28.3459	44	111	4.38736	84	183	1.03069	124	255	0.3239
5	41	26.8778	45	113	4.21263	85	185	0.99815	125	257	0.31559
6	43	25.4954	46	115	4.04589	86	187	0.96681	126	259	0.30754
7	45	24.1932	47	117	3.88673	87	189	0.93662	127	261	0.29974
8	46	22.5662	48	118	3.73476	88	190	0.90753	128	262	0.29216
9	48	21.8094	49	120	3.58962	89	192	0.8795	129	264	0.28482
10	50	20.7184	50	122	3.45097	90	194	0.85248	130	266	0.2777
11	52	19.6891	51	124	3.31847	91	196	0.82643	131	268	0.27078
12	54	18.7177	52	126	3.19183	92	198	0.80132	132	270	0.26408
13	55	17.8005	53	127	3.07075	93	199	0.77709	133	271	0.25757
14	57	16.9341	54	129	2.95896	94	201	0.75373	134	273	0.25125
15	59	16.1156	55	131	2.84421	95	203	0.73119	135	275	0.24512
16	61	15.3418	56	133	2.73823	96	205	0.70944	136	277	0.23916
17	63	14.6181	57	135	2.63682	97	207	0.68844	137	279	0.23338
18	64	13.918	58	136	2.53973	98	208	0.66818	138	280	0.22776
19	66	13.2631	59	138	2.44677	99	210	0.64862	139	282	0.22231

Appendix 1 Temperature Sensor Resistance Value Table for T1, T2, T3, T4 (°C--K)

°C °C °F °C °F °C °F °F K Ohm K Ohm K Ohm K Ohm -20 -4 542.7 68.66 13.59 3.702 511.9 65.62 13.11 3.595 -19 -2 12.65 3.492 -18 62.73 -17 455.9 59.98 12.21 3.392 57.37 11.79 -16 430.5 3.296 -15 406.7 54.89 11.38 3.203 52.53 10.99 -14 384.3 3.113 -13 363.3 50.28 10.61 3.025 -12 343.6 48.14 10.25 2.941 -11 325.1 46.11 9.902 2.86 -10 307.7 44.17 9.569 2.781 -9 42.33 2.704 291.3 9.248 -8 275.9 40.57 8.94 2.63 -7 261.4 38.89 8.643 2.559 -6 247.8 37.3 8.358 2.489 -5 234.9 35.78 8.084 2.422 -4 222.8 34.32 7.82 2.357 -3 211.4 32.94 7.566 2.294 -2 200.7 31.62 7.321 2.233 -1 190.5 30.36 7.086 2.174 180.9 29.15 6.859 2.117 171.9 6.641 2.061 163.3 26.9 6.43 2.007 1.955 155.2 25.86 6.228 24.85 1.905 147.6 6.033 140.4 5.844 1.856 23.89 133.5 22.89 5.663 1.808 127.1 22.1 5.488 1.762 21.26 5.32 1.717 115.2 20.46 5.157 1.674 109.8 19.69 1.632 104.6 18.96 4.849 99.69 18.26 4.703 95.05 17.58 4.562 90.66 16.94 4.426 86.49 16.32 4.294 82.54 15.73 4.167 78.79 15.16 4.045 75.24 14.62 3.927 14.09 71.86 3.812


Appendix 2 Temperature Sensor Resistance Value Table for T5 (°C --K)

Appendix 3:

°c	°F	°c	°F	°c	°F	°c	°F	°c	°F
-5	23	21	69.8	51	123.8	82	179.6	113	235.4
-4	24.8	22	71.6	52	125.6	83	181.4	114	237.2
-3	26.6	23	73.4	53	127.4	84	183.2	115	239
-2	28.4	24	75.2	54	129.2	85	185	116	240.8
-1	30.2	25	77	55	131	86	186.8	117	242.6
0	32	25.5	77.9	56	132.8	87	188.6	118	244.4
0.5	32.9	26	78.8	57	134.6	88	190.4	119	246.2
1	33.8	27	80.6	58	136.4	89	192.2	120	248
1.5	34.7	28	82.4	59	138.2	90	194	121	249.8
2	35.6	29	84.2	60	140	91	195.8	122	251.6
2.5	36.5	30	86	61	141.8	92	197.6	123	253.4
3	37.4	31	87.8	62	143.6	93	199.4	124	255.2
3.5	38.3	32	89.6	63	145.4	94	201.2	125	257
4	39.2	33	91.4	64	147.2	95	203	126	258.8
4.5	40.1	34	93.2	65	149	96	204.8	127	260.6
5	41	35	95	66	150.8	97	206.6	128	262.4
6	42.8	36	96.8	67	152.6	98	208.4	129	264.2
7	44.6	37	98.6	68	154.4	99	210.2	130	266
8	46.4	38	100.4	69	156.2	100	212	131	267.8
9	48.2	39	102.2	70	158	101	213.8	132	269.6
10	50	40	104	71	159.8	102	215.6	133	271.4
11	51.8	41	105.8	72	161.6	103	217.4	134	273.2
12	53.6	42	107.6	73	163.4	104	219.2	135	275
13	55.4	43	109.4	74	165.2	105	221	136	276.8
14	57.2	44	111.2	75	167	106	222.8	137	278.6
15	59	45	113	76	168.8	107	224.6	138	280.4
16	60.8	46	114.8	77	170.6	108	226.4	139	282.2
17	62.6	47	116.6	78	172.4	109	228.2	140	284
18	64.4	48	118.4	79	174.2	110	230	141	285.8
19	66.2	49	120.2	80	176	111	231.8	142	287.6
20	68	50	122	81	177.8	112	233.6	143	289.4

2.Compressor checking

Measure the resistance value of each winding by using the tester.

Position	Resistance Value							
	ASN98D22UFZ	ASM135D23UFZ	ATF235D22UMT	ATF250D22UMT				
Blue - Red								
Blue - Black	1.57Ω	1.75 Ω	0.75 Ω	0.75 Ω				
Red - Blue								

Position	Resistance Value						
	KSK103D33UEZ3	KSN140D21UFZ	KTM240D57UMT				
Blue - Red							
Blue - Black	2.02Ω	1.28Ω	0.62Ω				
Red - Blue							

3. IPM continuity check

Turn off the power, let the large capacity electrolytic capacitors discharge completely, and dismount the IPM. Use a digital tester to measure the resistance between P and UVWN; UVW and N.

Digital	tester	Normal resistance value	Digital	tester	Normal resistance value
		value			varue
(+) Red	(-)Black		(+) Red	(-)Black	
	N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	U		×
P	U		V		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
F	V	(Several MΩ)	W	IN	(Several M Ω)
	W		(+) Red		

4: Indoor outdoor Fan Motor

Measure the resistance value of each winding by using the tester.

Model		YKT-32-6-202L	YKT-32-6-3L	YKT-48-6-206	YKT-63-6-200L
Brand		Tongde	Welling	Welling	Welling
Black - Red	Ω	86	213	152	88.5
Main					
Blue -Black	Ω	64	156	142	138
AUX					

5: Pressure On Service Port

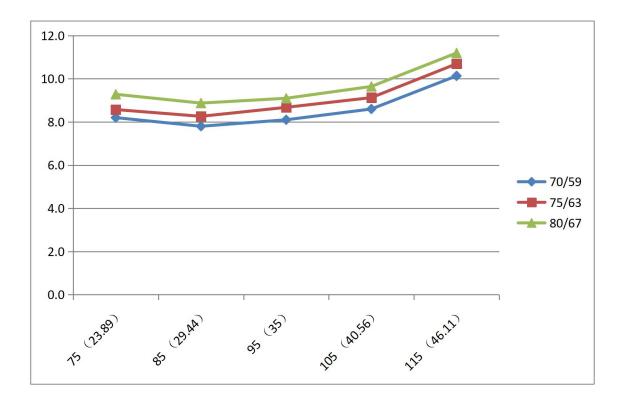
80/67

135

Cooling chart:

PSI

°E (°C)	ODT	75	85	95	105	115
°F(°C)	IDT	(23.89)	(29.44)	(35)	(40.56)	(46.11)
BAR	70/59	8.2	7.8	8.1	8.6	10.1
BAR	75/63	8.6	8.3	8.7	9.1	10.7
BAR	80/67	9.3	8.9	9.1	9.6	11.2
°F(°C)	ODT	75	85	95	105	115
F(C)	IDT	(23.89)	(29.44)	(35)	(40.56)	(46.11)
PSI	70/59	119	113	117	125	147
PSI	75/63	124	120	126	132	155

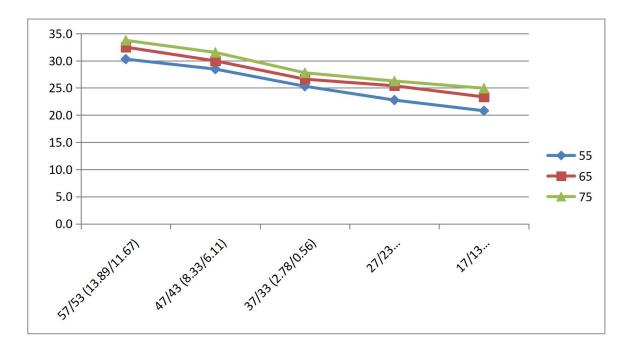

°F(°C)	ODT	75	85	95	105	115
F(C)	IDT	(23.89)	(29.44)	(35)	(40.56)	(46.11)
MPA	70/59	0.82	0.78	0.81	0.86	1.01
MPA	75/63	0.86	0.83	0.87	0.91	1.07
MPA	80/67	0.93	0.89	0.91	0.96	1.12

132

140

162

129


65

Heating Chart:

°F	\backslash				27/23	17/13
(°C)	D'I	57/53	47/43	37/33		
(C)	TDI	(13.89/11.67)	(8.33/6.11)	(2.78/0.56)	(-2.78/-5)	(-8.33/-10.56)
BAR	55	30.3	28.5	25.3	22.8	20.8
BAR	65	32.5	30.0	26.6	25.4	23.3
BAR	75	33.8	31.5	27.8	26.3	24.9

°F (°C)	TD IDT	57/53 (13.89/11.67)	47/43 (8.33/6.11)	37/33 (2.78/0.56)	27/23 (-2.78/-5)	17/13 (-8.33/-10.56)
PSI	55	439	413	367	330	302
PSI	65	471	435	386	368	339
PSI	75	489	457	403	381	362

°F	\backslash					17/13
r (°C)	<u>J</u> T	57/53	47/43	37/33	27/23	
(C)	TDI	(13.89/11.67)	(8.33/6.11)	(2.78/0.56)	(-2.78/-5)	(-8.33/-10.56)
MPA	55	3.03	2.85	2.53	2.28	2.08
MPA	65	3.25	3.00	2.66	2.54	2.33
MPA	75	3.38	3.15	2.78	2.63	2.49

66

Update log

1,1/21/2017,P14, change the 36K cycling diagram. Add low and high pressure protector on the diagram.

2,1/21/2017.P54, Add P6 error code and trouble shooting.

3, 12/18/2018, add CPG-B, CHX*(I) Models.