ComfortStar® Introduction & Service manual LUC7/LCM7 Series

Content

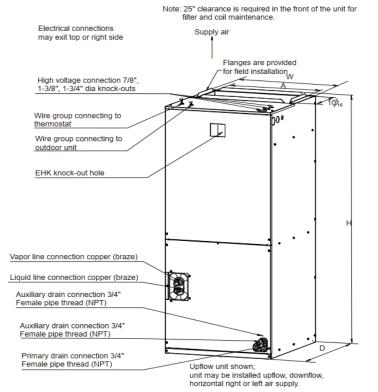
- Product lineup
- Features
- Structure, wiring and setting
- Troubleshooting

Product Lineup and Features

Product Lineup

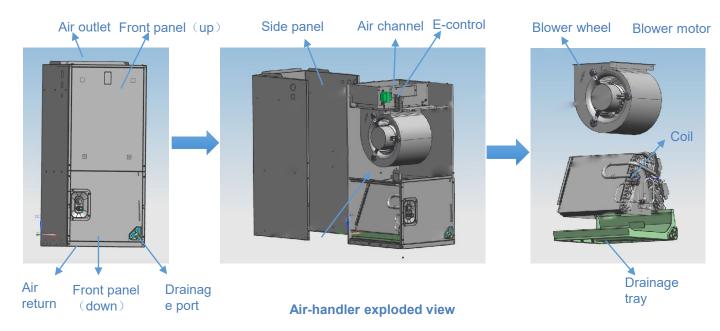
Factory Model	Capacity (Btu/h)	Motor Type	Default Throttling Device*
LUC7-18	18,000	PSC	Piston
LUC7-24	23,000	PSC	Piston
LUC7-36	34,200	PSC	Piston
LUC7-48	45,000	PSC	Piston
LUC7-60	54,000	PSC	Piston
LCM7-24	23,200	ECM	Piston
LCM7-36	34,200	ECM	Piston
LCM7-48	45,000	ECM	Piston
LCM7-60	54,000	ECM	Piston
LCM7-61	55,000	ECM	Piston

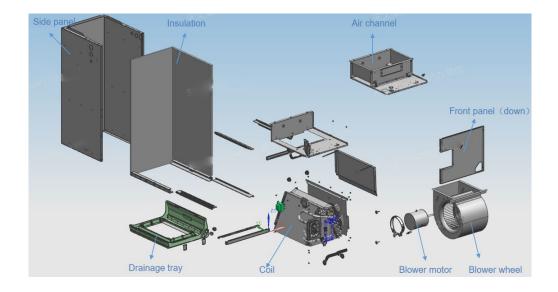
*Throttling device could be customized TXV


Features

- High heat-transfer efficiency and low static-pressure drop A-shaped coil.
- Foil-faced insulation to prevent energy loss through the cabinet.
- Factory-sealed cabinet certified to achieve 2% or less air leakage rate at 1.0 inch water column.
- Multi-stage blower Speed Control to align with varying capacity demands.
- Multi-speed constant-torque ECM motor.
- 4-position installation: Upflow, Horizontal Right, Downflow, Horizontal Left.
- Horizontal and vertical condensate drain pans standard, primary and secondary condensate fittings.
- Field-installed electric heater kits 5, 7.5, 10, 15, 20 kW available as accessories.
 Multiple electrical entry locations.
- Dual front panel, volute and coil with slide track, TXV with threaded connection for easy maintenance.
- Integrated filter rack with toolless door access.
- Easy-to-braze copper evaporator connection.
- TXV designed for easy piston replacement.
- All-aluminum heat exchanger extends product lifetime.
- Advanced internal welding process to reduce potential corrosion.
- AHRI and ETL listed.
- Polymer condensate drain pan with UVC inhibitor to extends product lifetime.
- Fully-insulated cabinet design.
- R454B refrigerant sensor ensures safe operation.

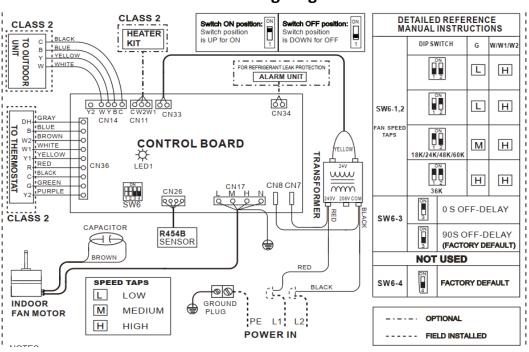
Structure, Wiring and Setting


Structure


Dimension H×W×D(inches)	
41-3/8×18-1/8×20-1/2	
46-1/2×19-5/8×21-5/8	
40-1/2 ~ 19-5/8 ~ 21-5/8	
51-1/2×22×24	
41-3/8×18-1/8×20-1/2	
46-1/2×19-5/8×21-5/8	
54-1/2×22×24	

4

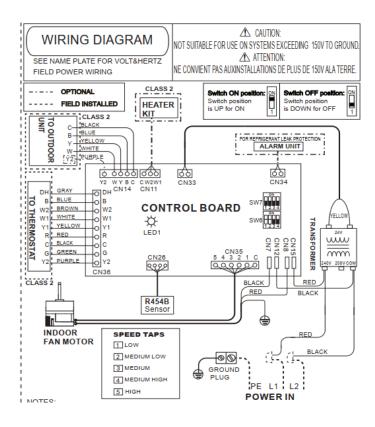
Structure

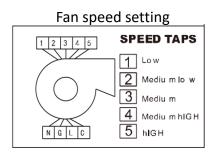


Air-handler exploded view

Wiring and Fan Speed Setting

PSC Motor Type



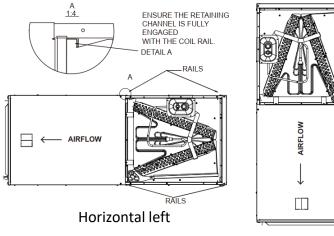

Fan speed setting Motor Board M1 LOW Low fan M2 HIGH setting FAN MEDIUM CN11 сом Motor Board M1 LOW Medium M2 HIGH Fan setting FAN MEDIUM CN11 COM Motor Board M1 LOW HIGH fan M2 HIGH setting FAN MEDIUM CN11 сом

Wiring diagram

Wiring and Fan Speed Setting

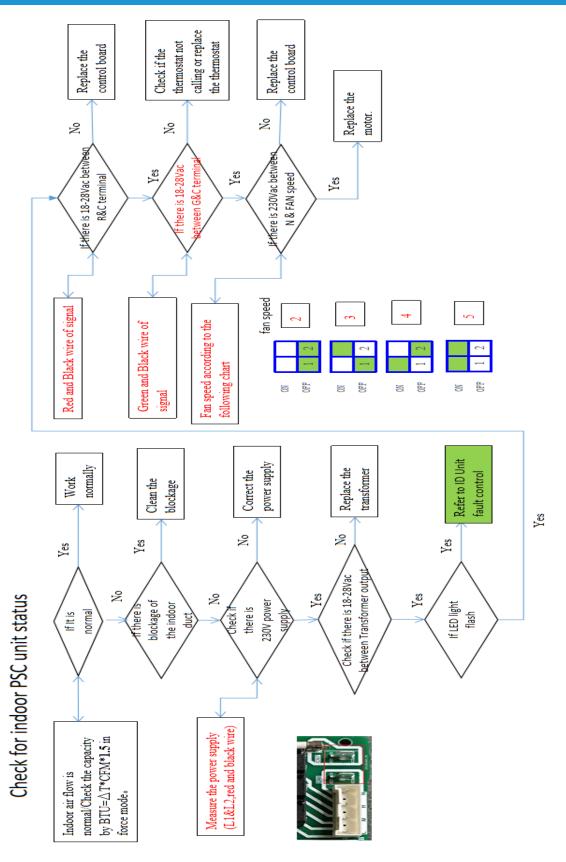
ECM Motor Type

LED light indication

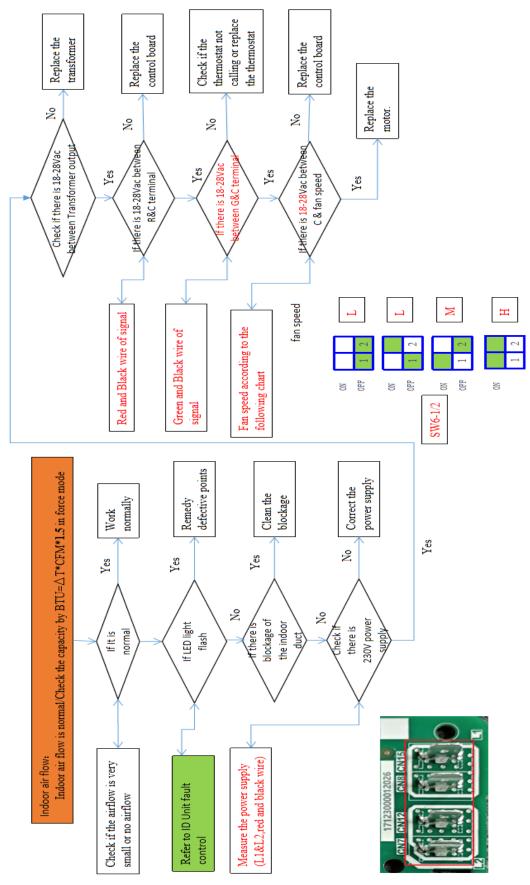

Note: LED 4 light on indicates the unit is normal, if not on indicates power off or abnormal.

DIP-switch functions

MA	DETAILED REFERENCE MANUAL INSTRUCTIONS			
1-31		SWITCH	Y1 OR G	W/W1/W2
	[2	3
SW6-1,2 FAN SPEED TAPS	[48K	3	4
	24	С. К/36К	4	5
	60K		5	5
2-STAGE CONTROLLER				
	DIP	SWITCH	Y1ORG (MIN)	Y1+Y2 OR W/ W1/W2(MAX)
	66	COOL	1	2
	L	HEAT	1	3
		COOL	1	3
	₩ <u>₽</u> 61K	HEAT	2	4
SW6-1,2 FAN SPEED		COOL	2	4
TAPS		HEAT	3	5
		COOL	3	5
	ΓŢ	HEAT	3	5
	N	OT US	ED	
SW6-3,4				
SW7-1,2 SW7-3,4	Ţ	FACT	ORY DE	FAULT

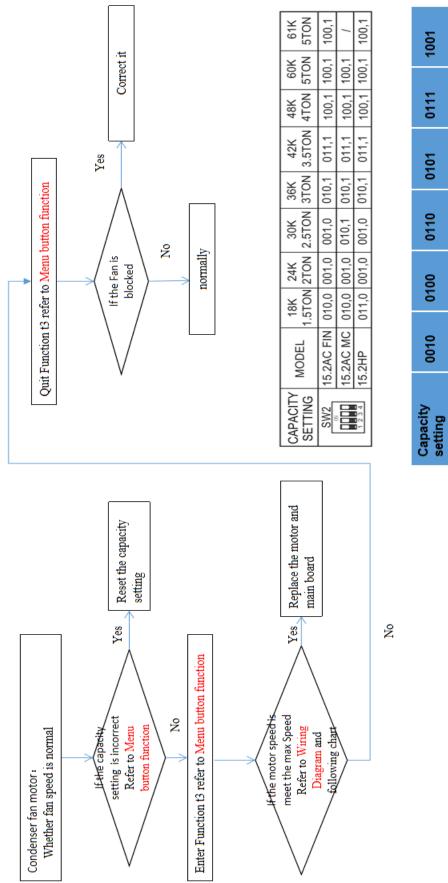

Installation Direction

This series unit could be installed horizontal left direction, or vertical down flow (need to lift turn around the coil up to down as below illustration).

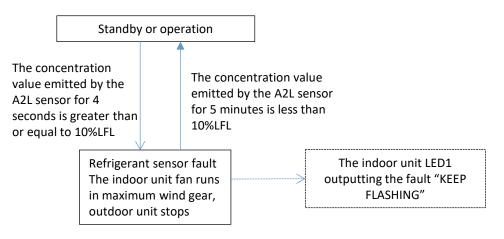


Vertical down flow

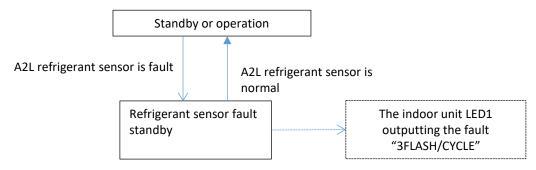
Troubleshooting



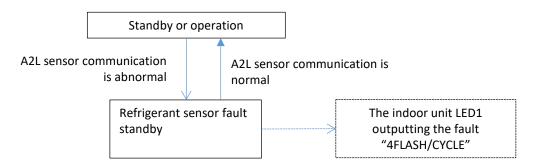
Check for indoor ECM unit status

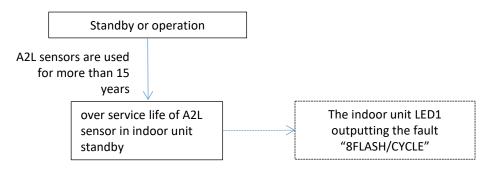

Check for Condenser fan motor Speed

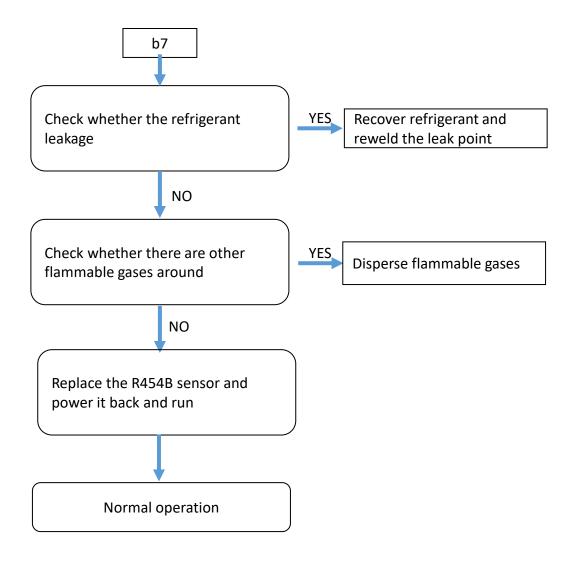
Max Speed

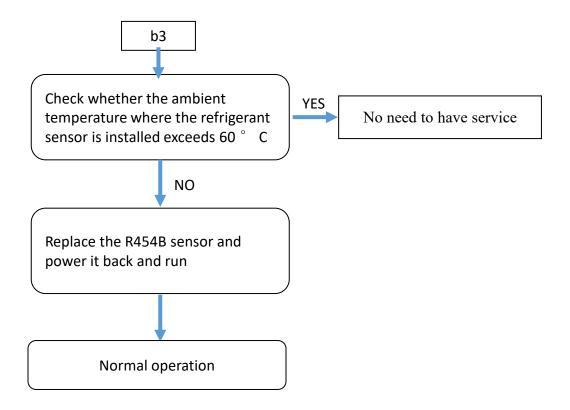


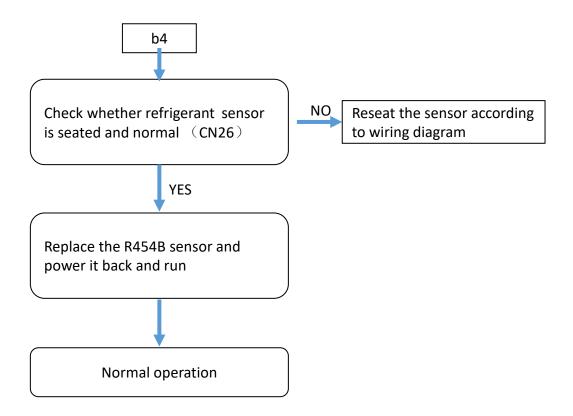
ID Unit fault control

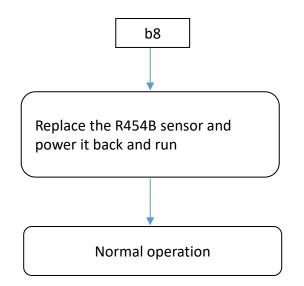

(1) Refrigerant leakage fault in indoor unit


(2) A2L refrigerant sensor fault (A2L sensor)

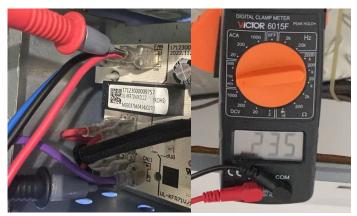

(3) A2L sensor communication fault (A2L sensor)


(4) A2L sensor over service life in indoor unit


Faulty code	Keep flashing
Model	All
Name	Refrigerant leakage fault
Classify	Refrigerant leakage
Possible cause	· Refrigerant leakage


Faulty code	3 flash/cycle
Model	All
Name	R454B sensor fault in IDU
Classify	Sensor fault
Possible cause	 Sensors failed Beyond the normal operating temperature range

Faulty code	4 flash/cycle
Model	IDU
Name	R454B sensor communication fault in IDU
Classify	Electric issue
Possible cause	 refrigerant sensor line connection in IDU abnormal: refrigerant sensor signal line in IDU is not properly plugged (CN26) Refrigerant sensor in IDU abnormal: damaged

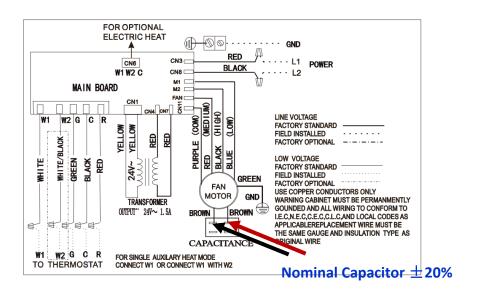

Faulty code	8 flash/cycle
Model	All
Name	R454B sensor over service life
Classify	Sensor fault
Possible cause	· Over service

PSC Fan check

If the PSC fan motor doesn't run properly,

- 1. Measure the motor input voltage, use multi-meter to measure voltage between terminals **FAN**(on board) and **CN11**(on transformer), the normal voltage should be around 220V AC.
- Measure resistance of motor windings, between COM&HIGH, COM&MEDIUM, COM&LOW, their normal resistance value should be 5~100Ω(depends on different models).

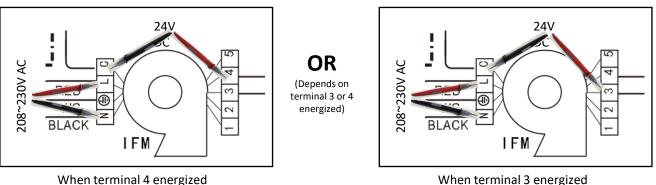
Measure input voltage to motor



Example: Measure resistance of motor winding

PSC Fan check

If the PSC fan motor doesn't run properly,


3. Measure the capacitor: discharged the capacitor then disconnect it then measure, it's normal value is nominal capacitance \pm 20%.

ECM Fan check

If the ECM fan motor doesn't run properly,

1. Measure the motor speed signal, use multi-meter to measure voltage between terminals C&3 or C&4, the normal voltage should be 24V DC when the fan turns on.

When terminal 3 energized

ECM Fan check

If the ECM fan motor doesn't run properly,

2. Measure the motor input voltage, use multi-meter to measure voltage between terminals **CN39**(on board) and **COM**(on transformer), the normal voltage should be around 220V AC.

3. Measure the resistance of motor winding, the normal resistance value should be $5^{\sim}100\Omega$

Control Board Replacement

1. Remove front panel screws

2. Remove front panel

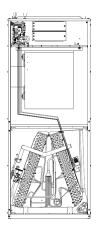
3. Take picture of wiring

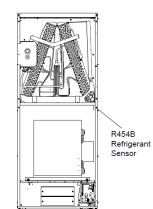


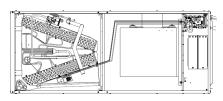
4. Detach all wires

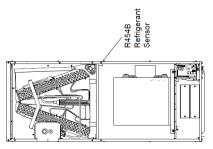
Control Board Replacement

5. Press the fixture and loosen the board




6. Take out the board




7. Install a new board, set the capacity dip-switch per the wire diagram on the unit.

Installation positions of refrigerant sensors in different installation modes

Internal structural parts repair and replacement guidelines

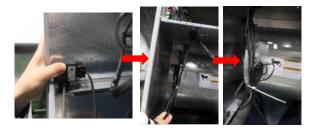
Refrigerant sensor repair and replacement guidelines separately

Remove the screws that fix the Refrigerant sensor and replace the Refrigerant sensor. Reuse screw to secure the Refrigerant sensor.

Use zip cable ties to reattach the sensor wire body to the left side of the Refrigerant sensor and the wire buckle.

Instructions for replacing Refrigerant sensor during reverse installation of evaporators

Remove the screws that secure the water collection tray assembly, extract the evaporator components from the box, reverse the evaporator components by 180 degrees, and push them back into the unit along the guide rails on both sides of the unit.


Remove the screws that fix the Refrigerant sensor and replace the Refrigerant sensor. Reuse screw to secure the Refrigerant sensor.

Use zip cable ties to reattach the sensor wire body to the left side of the Refrigerant sensor and the wire buckle.

