

R32 Rotary 60Hz Universal Outdoor 14.3 SEER2 Series Technical Manual

Content

Part 1. General Information.....	3
1. Model Names of Indoor/Outdoor Units.....	4
2. External Appearance	5
3. Features	6
Part 2. Indoor Unit	8
1.Specification	9
2.Dimension.....	10
3.Service Space.....	11
4.Four-way installation	12
5.Air Filter (Not Factory Installed)	14
6.Electric heater	15
7.Airflow performance	16
8.Wiring Diagrams	17
9.Electric Characteristics	17
10.The Specification of Wiring.....	18
11.Field Wiring	19
12.Exploded View.....	23
Part 3 Outdoor Unit.....	24
1.Specification	25
2.Dimensions	26
3.Service Space.....	27
4.Wiring Diagrams.	28
5.Electric Characteristics	29
6.Operation Limits	29
7.Sound Levels.....	29
8.Exploded View	30
9.Troubleshooting.....	32
Part 4 Function introduction.....	46
1.Electrical Components Description	47
2.Outdoor gas return temperature Anti-Freezing Function	47
3.R32 Leakage Detection Function.....	48
4.Indoor Coil Anti-Freezing Function.....	48
Part 5 Installation.....	49
1.Precaution on Installation	50
2. Oil return bend installation	52
3.Vacuum Dry and Leakage Checking.....	53
4.Additional Refrigerant Charge.....	55
5.Insulation Work	57
6.Test Operation	59

Part 1. General Information

1. Model Names of Indoor/Outdoor Units.....	4
2. External Appearance.....	5
3. Features	6

1. Model Names of Indoor/Outdoor Units

1.1 Indoor Units

Model name	Dimension(W×H×D) (inch)	Power supply
LUC17-18-15	19-5/8×45-3/4×22	208/230V-1Ph-60Hz
LUC17-24-15	19-5/8×45-3/4×22	208/230V-1Ph-60Hz
LUC17-30-15	19-5/8×45-3/4×22	208/230V-1Ph-60Hz
LUC17-36-15	19-5/8×45-3/4×22	208/230V-1Ph-60Hz

1.2 Outdoor Units

Model name	Dimension(W×H×D) (inch)	Power supply
BAR17-18-15	21-4/5×25×21-4/5	208/230V-1Ph-60Hz
BAR17-24-15	21-4/5×25×21-4/5	208/230V-1Ph-60Hz
BAR17-30-15	29-1/7×25×29-1/7	208/230V-1Ph-60Hz
BAR17-36-15	29-1/7×25×29-1/7	208/230V-1Ph-60Hz

2. External Appearance

		14.3 SEER2 TDU	
capacity	1.5/2/Ton	2.5/3 Ton	
pic			
14.3 SEER2 AHU			
capacity	1.5/2/2.5/3 Ton		
pic			

3. Features

3.1 Wide operation range.. Cooling:57-118°F

3.2 Well-known brand GMCC Rotary compressor, reliable quality.

3.3 Condenser coils constructed with copper tubing and enhanced golden fins.

3.4 Use PISTON as expansion device

3.5 DC fan motors, provide selections of air flow to meet desired applications.

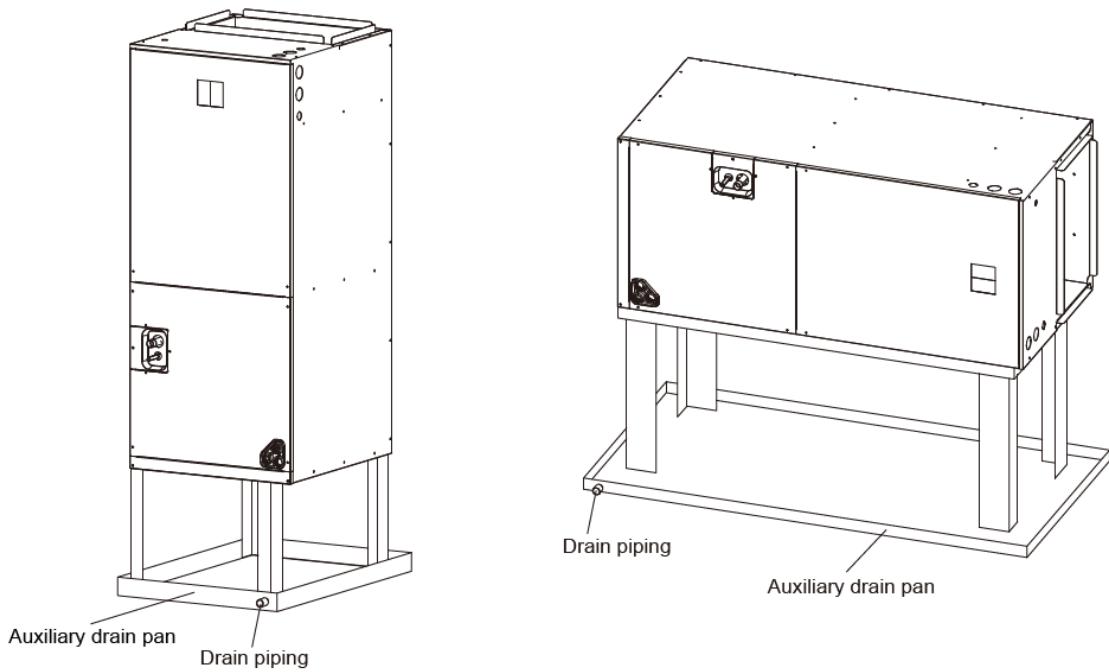
3.6 ECM fan motor for air handlers, higher efficiency, lower noise, constant speed.

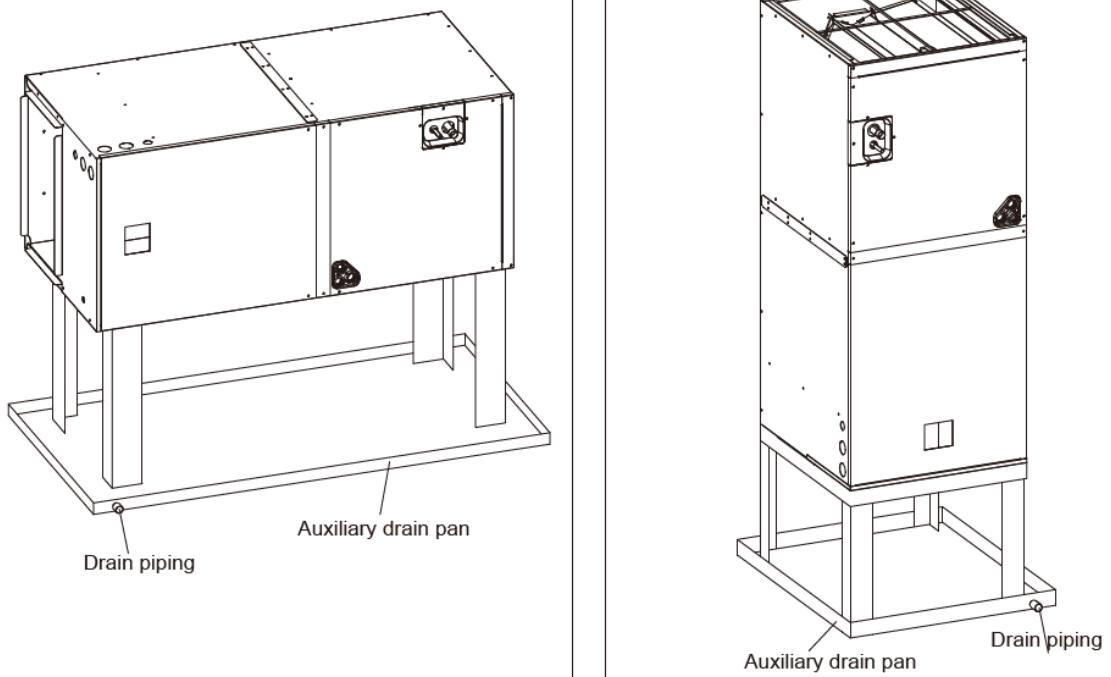
3.7 24V control, time delay relay, fan relay and transformer included.

3.8 R32 environment friendly refrigerant.

3.9 The air handler unit has a refrigerant leakage sensor, providing safer protection.

3.10 AHRI certification, ETL certification.


3.11 Refrigerant leakage sensor is configured to detect the refrigerant content in the air


Intelligent oil return program to provide operating life

"A" shape coils, constructed with Oxygen-free copper tubing and enhanced aluminum fins

Detachable air filter for cleaning or renewal

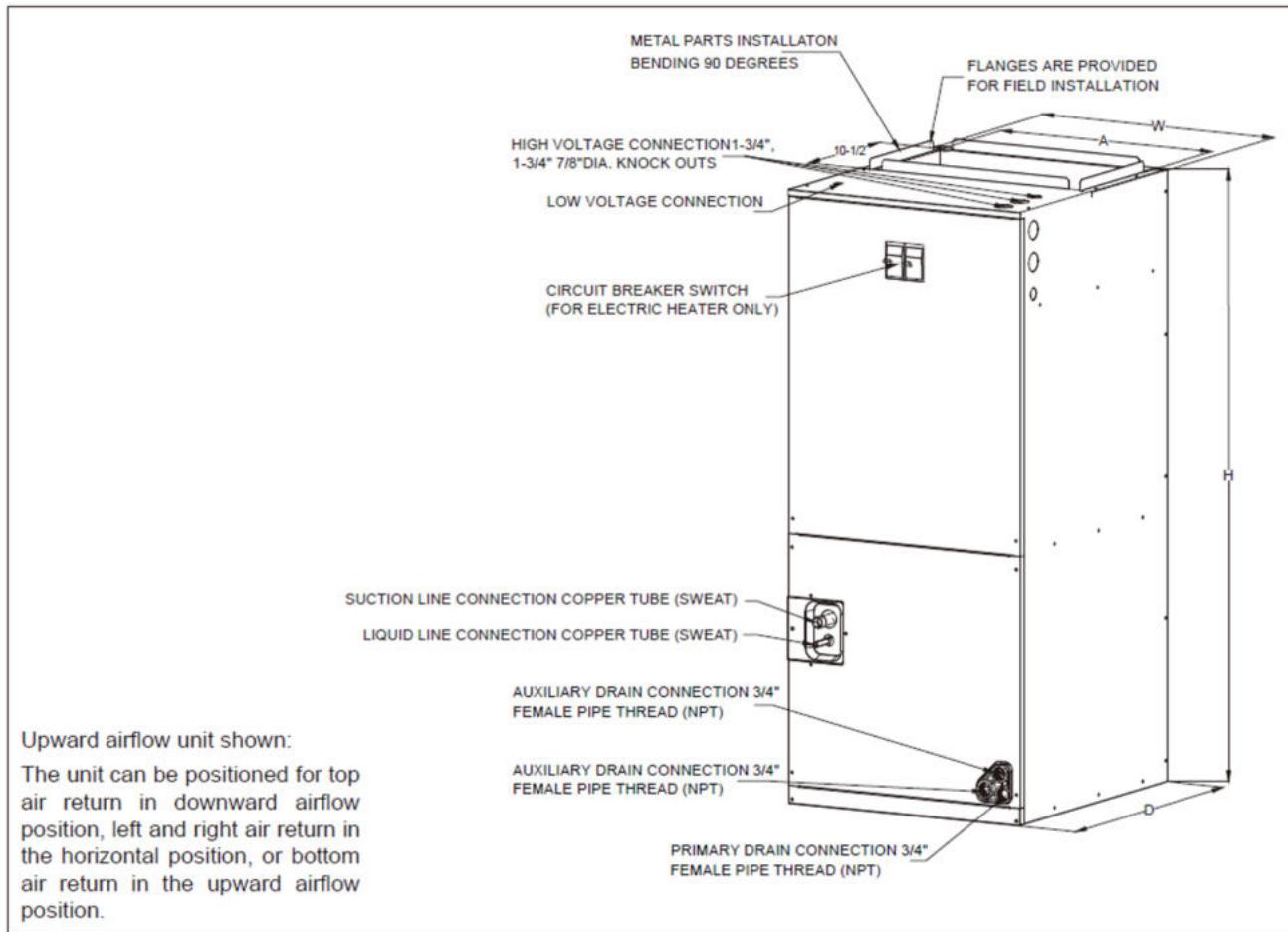
Versatile 4-way convertible design. The air can be discharged from four directions.

Part 2. Indoor Unit

1.Specification	9
2.Dimension	10
3.Service Space	11
4.Four-way installation	12
5.Air Filter (Not Factory Installed)	14
6.Electric heater	15
7.Airflow performance	16
8.Wiring Diagrams	17
9.Electric Characteristics	17
10.The Specification of Wiring	18
11.Field Wiring	19
12.Exploded View	23

1.Specification

Model			LUC17-18-15	LUC17-24-15	LUC17-30-15	LUC17-36-15
Power supply	Rated Voltage	V/Ph/Hz	208~230V/1ph/60Hz			
	Min./Max.Voltage	v	187/253			
Cooling	Capacity	Btu/h	17600	22800	28000	33000
MCA		A	4	4	5	5
MOP		A	6	6	6	6
Indoor motor	Type		ECM	ECM	ECM	ECM
	Output	W	249	249	373	373
	Rate current	A	2.6	2.6	3.8	3.8
Indoor fan	Material		Metal			
	Type		Centrifugal volute			
	diameter	in	12 19/67	12 19/67	12 19/67	12 19/67
	width	in	13 3/95	13 3/95	13 3/95	13 3/95
	Airflow(rated)	CFM	770	785	975	1030
Indoor coil	Fin material		Hydrophilic			
	Tube material		inner grooved			
Indoor air flow		CFM	770	785	975	1030
Indoor noise level		dB(A)	50	54	56	56
Indoor Unit	Unit (WxHxD)	in	19-5/8×45-3/4×22		19-5/8×45-3/4×22	
	Packing (WxHxD)	in	22-5/6×47-5/8×25-3/5		22-5/6×47-5/8×25-3/5	
	Net / Gross weight	lbs	119/133	128/140	129/141	129/141
Throttle type			piston			
Operation temp range	Cooling (°F)		57-118			


Notes:

1. Nominal cooling capacities are based on the following conditions:

Indoor temp: 27°C DB, 19°C WB; Outdoor temp: 35°C DB; Equivalent ref. piping: 5m (horizontal)

2. Actual noise level may differ, depending on the room structure, etc., since these noise values are from an anechoic room.

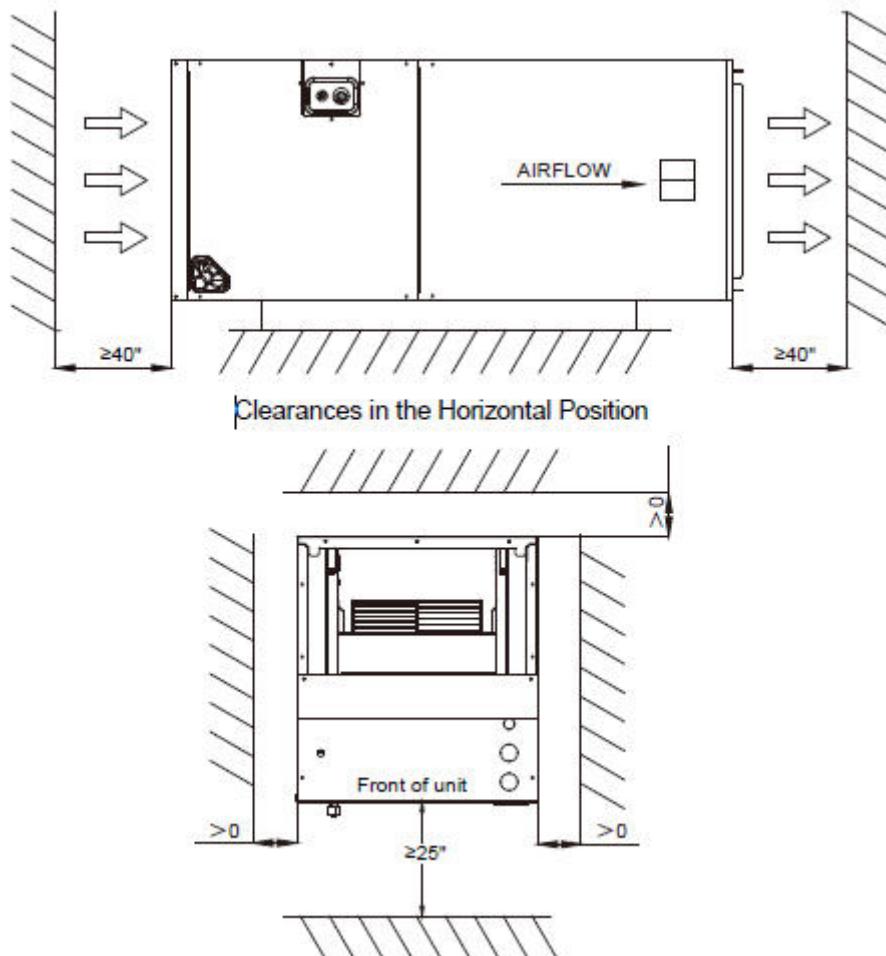

2. Dimension

Fig.1 DIMENSIONS					
DIMENSIONAL DATA					
MODE L SIZE	Dimensions				
	UNIT HEIGHT "H"/in (mm)	UNIT WIDTH "W"/in (mm)	UNIT LENGTH "D"/in (mm)	SUPPLY DUCT "A"/in (mm)	LIQUID LINE / VAPOR LINE IN (mm)
18K	45-3/4 [1162]	19-5/8 [500]	22 [560]	17-7/8 [454]	3/8 / 3/4 [9.5]/[19]
24K	45-3/4 [1162]	19-5/8 [500]	22 [560]	17-7/8 [454]	3/8 / 3/4 [9.5]/[19]
30K	45-3/4 [1162]	19-5/8 [500]	22 [560]	17-7/8 [454]	3/8 / 3/4 [9.5]/[19]
36K	45-3/4 [1162]	19-5/8 [500]	22 [560]	17-7/8 [454]	3/8 / 3/4 [9.5]/[19]

3. Service Space

The distance between the air outlet or return air and the wall must be at least 40 inches, and the front of the indoor unit must be at least 25 inches away from the wall.

4. Four-way installation

Horizontal right installation is the default factory configuration for all models. By removing the indoor coil assembly and reinstalling the coil, the vertical up flow position can be converted into a horizontal left position. Rotate the device by 90° to the horizontal left position, with the coil segment on the right and the blower segment on the left. Re-install the indoor coil by rotating 180° from the original position. Ensure that the fixing groove is fully engaged with the coil guide rail. When configured to be placed horizontally above the ceiling and/or living space, it is recommended to use an additional field supplied drain pan.

Steps to Change Cabinet Direction to Vertical Downward or Horizontal Left Direction

1. Remove the screws and the front panel, and disconnect the plug of T2 sensor and leak detection sensor wire from the circuit board (Figure 4.1, Step 1).
2. Pull out the coil with sensor wire (do not disconnect T2 sensor and leak detection sensor from the coil). (Figure 4.2, Step 2)
3. Install the coil in the correct direction and fix it in place. Reinsert those sensor wire in PCBA through the gap on the cabinet cover (Figure 4.3, Step 3).

STEP1

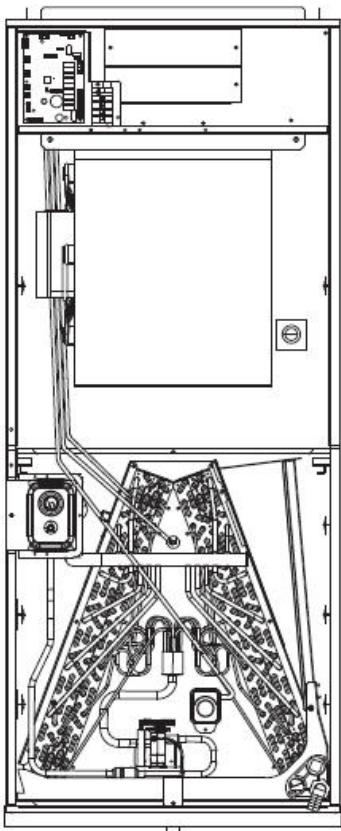


Figure 4.1

STEP2

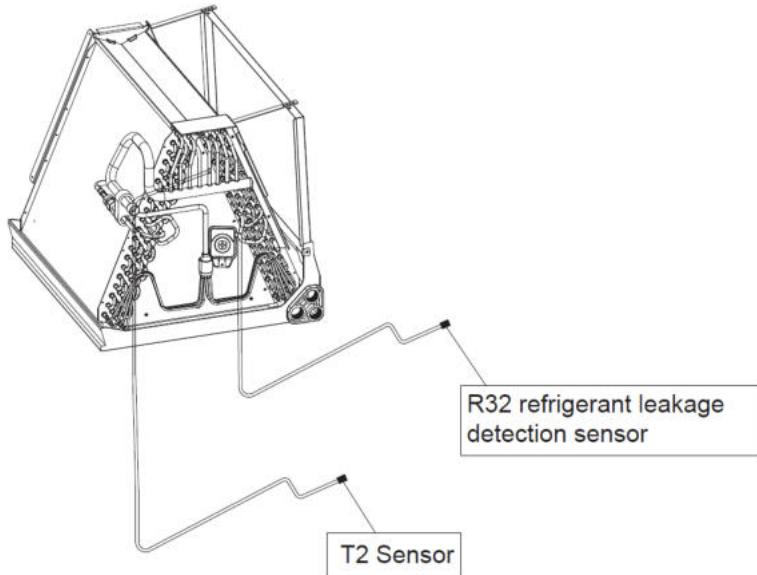


Figure 4.2

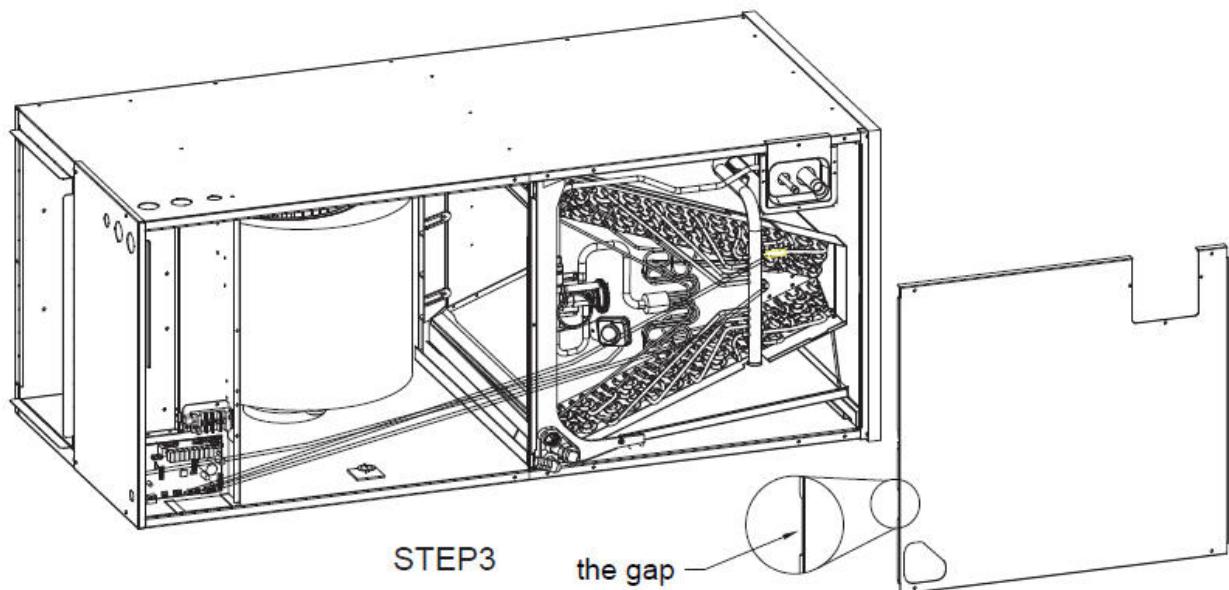


Figure 4.3

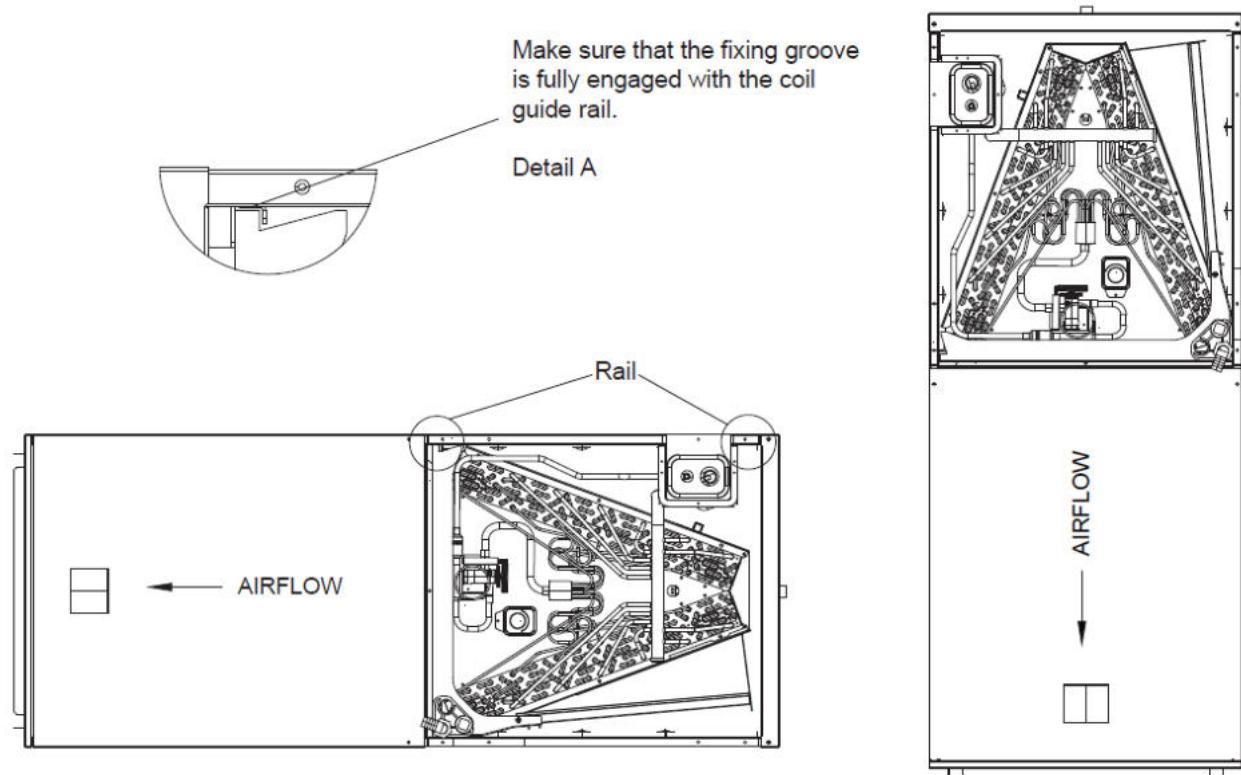
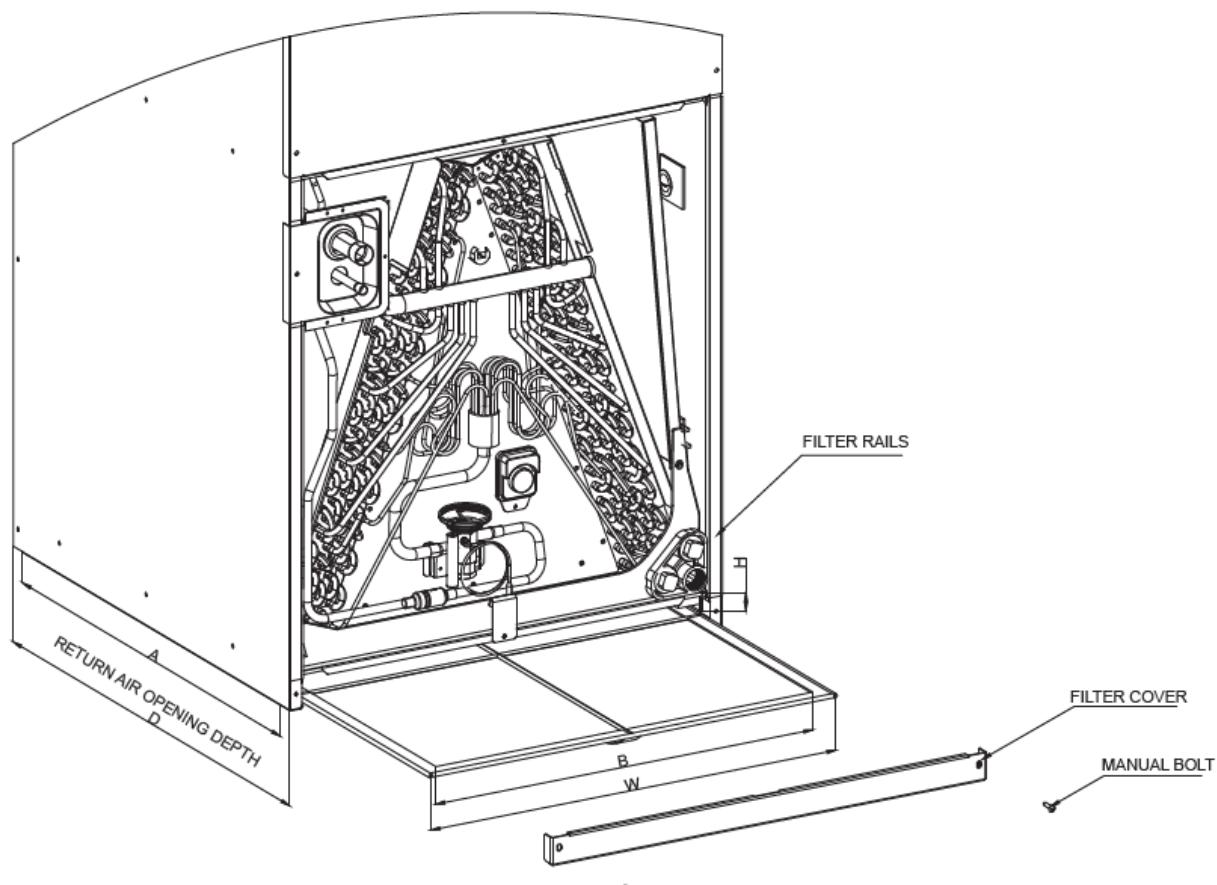


Figure 4.3


5. Air Filter (Not Factory Installed)

The filter is not included in the device and must be provided on site.

The size of external filters or other filtering devices must meet the maximum flow rate of 300ft/min or meet the recommended value of filter type.

The application and placement of filter is very important for airflow, which may affect the performance of heating and cooling system. Reduced airflow will shorten the life of the main components of the system, such as motors, components, thermal relays, evaporator coils or compressors. Therefore, we recommend that the return air duct system has only one filter position. For systems without return air filter grids, multiple filter grids can be installed at each return air opening.

If a high-efficiency filter screen or electronic air filtration system is used, it is very important that the air flow rate is not reduced. If the air flow decreases, the overall performance and efficiency of the device will decrease. It is strongly recommended to contact professional installation technicians to ensure the correct installation of such filtration systems.

Model	Filter size inches [mm]	"W" inches [mm]	"D" inches [mm]	"H" inches [mm]	Return Width "A" inches [mm]	Return Length "B" inches [mm]
18K/24K/30K/36K	18×20[457×508]	18.3 [466]	21.6 [548]	1 [25.4]	20.8 [528]	16.3 [414]

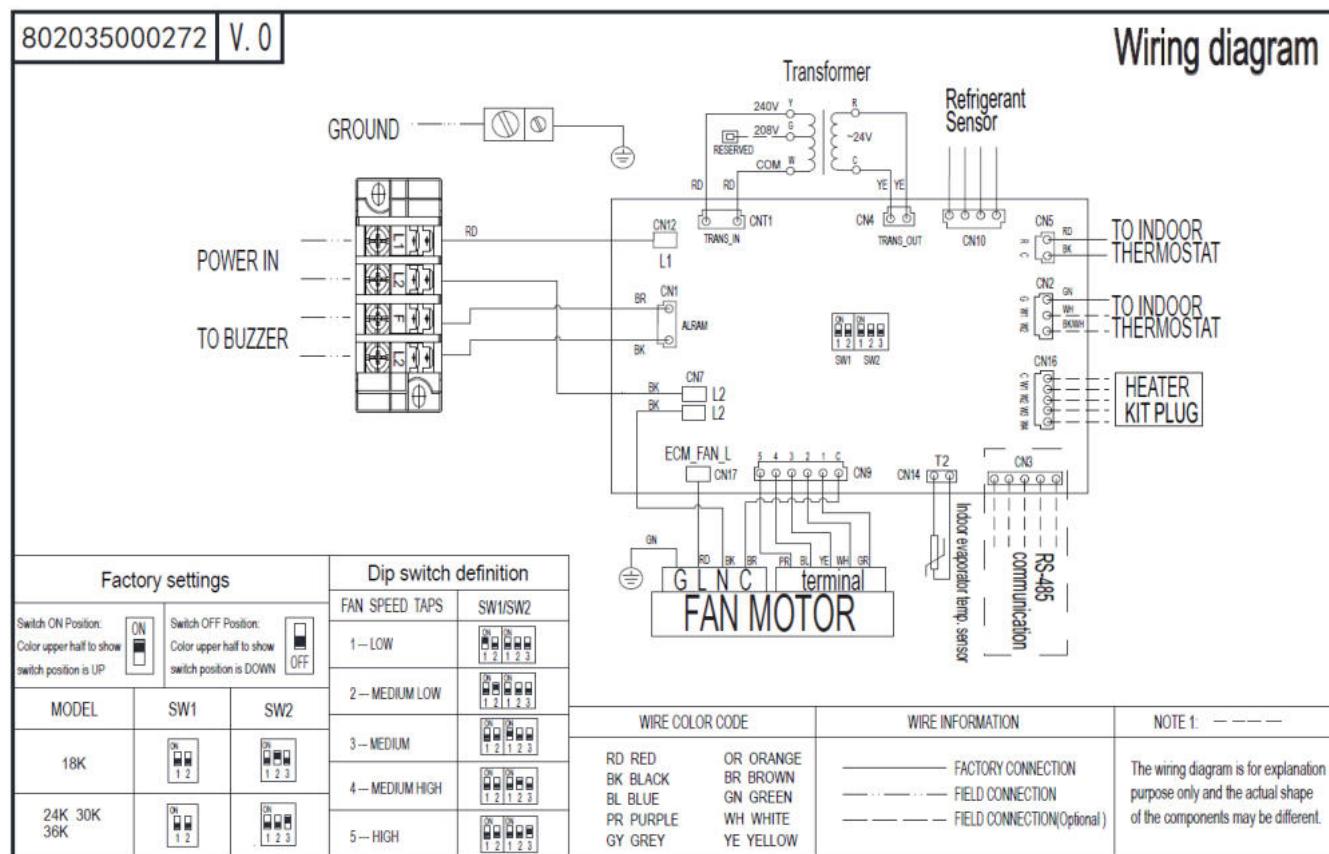
6. Electric heater

Heat kit model	AHU model	electric heat(kW) 208/230VAC	Current (A) 208/230VAC	MCA (A) 208/230VAC	MAX.Fuse or Breaker (HACR) Ampacity		Fan speed				
					208 VAC	230 VAC	1	2	3	4	5
CHE6-05B	18K	3.8/5	19.66/21.74	25/29	30	35	●	●	●	●	●
CHE6-08B		5.6/7.5	29.50/32.61	37/43	40	45	✗	✗	●	●	●
CHE6-05B	24K	3.8/5	19.66/21.74	25/29	30	35	●	●	●	●	●
CHE6-08B		5.6/7.5	29.50/32.61	37/43	40	45	✗	✗	●	●	●
CHE6-10B		7.5/10	39.32/43.48	50/57	55	60	✗	✗	✗	●	●
CHE6-05B	30K	3.8/5	19.66/21.74	25/29	30	35	●	●	●	●	●
CHE6-08B		5.6/7.5	29.50/32.61	37/43	40	45	✗	●	●	●	●
CHE6-10B		7.5/10	39.32/43.48	50/57	55	60	✗	✗	●	●	●
CHE6-05B	36K	3.8/5	19.66/21.74	25/29	30	35	●	●	●	●	●
CHE6-08B		5.6/7.5	29.50/32.61	37/43	40	45	✗	●	●	●	●
CHE6-10B		7.5/10	39.32/43.48	50/57	55	60	✗	✗	●	●	●
CHE6-15B		(5.6+5.6) /(7.5+7.5)	29.50+29.50/32.61+32.61	37+37/43+43	40/40	45/45	✗	✗	✗	●	●

- indicates availability, and ✗ indicates unavailability

7. Airflow performance

The air flow data is based on the cooling performance of coil and without filter. Performance table, select the appropriate product.


External static pressure ESP should be kept within the minimum and maximum limits shown in the following table to ensure the normal operation of cooling, heating, and electric heating.

Model size of air processor	Motor speed		SCFM								
			External Static Pressure-Inch Water Column [kPa]								
			0[0]	0.1[.025]	0.2[.050]	0.3[.075]	0.4[.100]	0.5[.125]	0.6[.150]	0.7[.175]	0.8[.200]
18K	Tap (1)	SCFM	669.9	571.8	490.9	394.3	269.5	-	-	-	-
		Watts	41	47	52	57	61	-	-	-	-
	Tap (2)	SCFM	792.2	708.6	615.9	548.5	474.2	371.5	265.1	-	-
		Watts	59	67	73	77	83	88	93	-	-
	Tap (3)	SCFM	948.8	887.5	809.6	723.6	671.6	597.0	504.2	410.2	-
		Watts	96	102	109	115	129	126	132	141	-
	Tap (4)	SCFM	1020.9	966.5	887.1	798.4	738.8	697.9	672.3	572.8	490.1
		Watts	118	127	136	144	150	156	160	167	177
	Tap (5)	SCFM	1115.2	1059.2	995.0	906.5	842.5	791.4	727.2	707.0	652.5
		Watts	148	157	167	178	186	191	198	205	211
24K	Tap (1)	SCFM	669.9	571.8	490.9	394.3	269.5	-	-	-	-
		Watts	41	47	52	57	61	-	-	-	-
	Tap (2)	SCFM	792.2	708.6	615.9	548.5	474.2	371.5	265.1	-	-
		Watts	59	67	73	77	83	88	93	-	-
	Tap (3)	SCFM	948.8	887.5	809.6	723.6	671.6	597.0	504.2	410.2	-
		Watts	96	102	109	115	129	126	132	141	-
	Tap (4)	SCFM	1020.9	966.5	887.1	798.4	738.8	697.9	672.3	572.8	490.1
		Watts	118	127	136	144	150	156	160	167	177
	Tap (5)	SCFM	1115.2	1059.2	995.0	906.5	842.5	791.4	727.2	707.0	652.5
		Watts	148	157	167	178	186	191	198	205	211
30K	Tap (1)	SCFM	955.3	897.8	839.5	739.4	655.3	575.9	511.5	432.4	392.2
		Watts	91	96	102	110	115	121	127	138	140
	Tap (2)	SCFM	1080.7	1031.5	977.4	925.6	819.4	743.8	675.5	608.7	547.1
		Watts	125	131	137	143	153	160	166	173	179
	Tap (3)	SCFM	1182.2	1138.1	1089.0	1042.9	986.9	879.5	811.4	749.5	689.2
		Watts	158	165	172	177	185	197	203	212	221
	Tap (4)	SCFM	1305.6	1261.8	1220.9	1179.5	1132.2	1086.1	984.1	914.5	856.6
		Watts	207	214	221	228	236	244	257	266	273
	Tap (5)	SCFM	1386.7	1350.0	1309.4	1274.6	1233.1	1186.6	1137.8	1031.5	970.0
		Watts	245	253	262	270	277	285	295	309	318
36K	Tap (1)	SCFM	955.3	897.8	839.5	739.4	65.5	575.9	511.5	432.4	392.2
		Watts	91	96	102	110	115	121	127	138	140
	Tap (2)	SCFM	1080.7	1031.5	977.4	925.6	819.4	743.8	675.5	608.7	547.1
		Watts	125	131	137	143	153	160	166	173	179
	Tap (3)	SCFM	1182.2	1138.1	1089.0	1042.9	986.9	879.5	811.4	749.5	689.2
		Watts	158	165	172	177	185	197	203	212	221
	Tap (4)	SCFM	1305.6	1261.8	1220.9	1179.5	1132.2	1086.1	984.1	914.5	856.6
		Watts	207	214	221	228	236	244	257	266	273
	Tap (5)	SCFM	1386.7	1350.0	1309.4	1274.6	1233.1	1186.6	1137.8	1031.5	970.0
		Watts	245	253	262	270	277	285	295	309	318

The highlighted area indicates the airflow within the required range of 300-450cfm/ton.

8.Wiring Diagrams

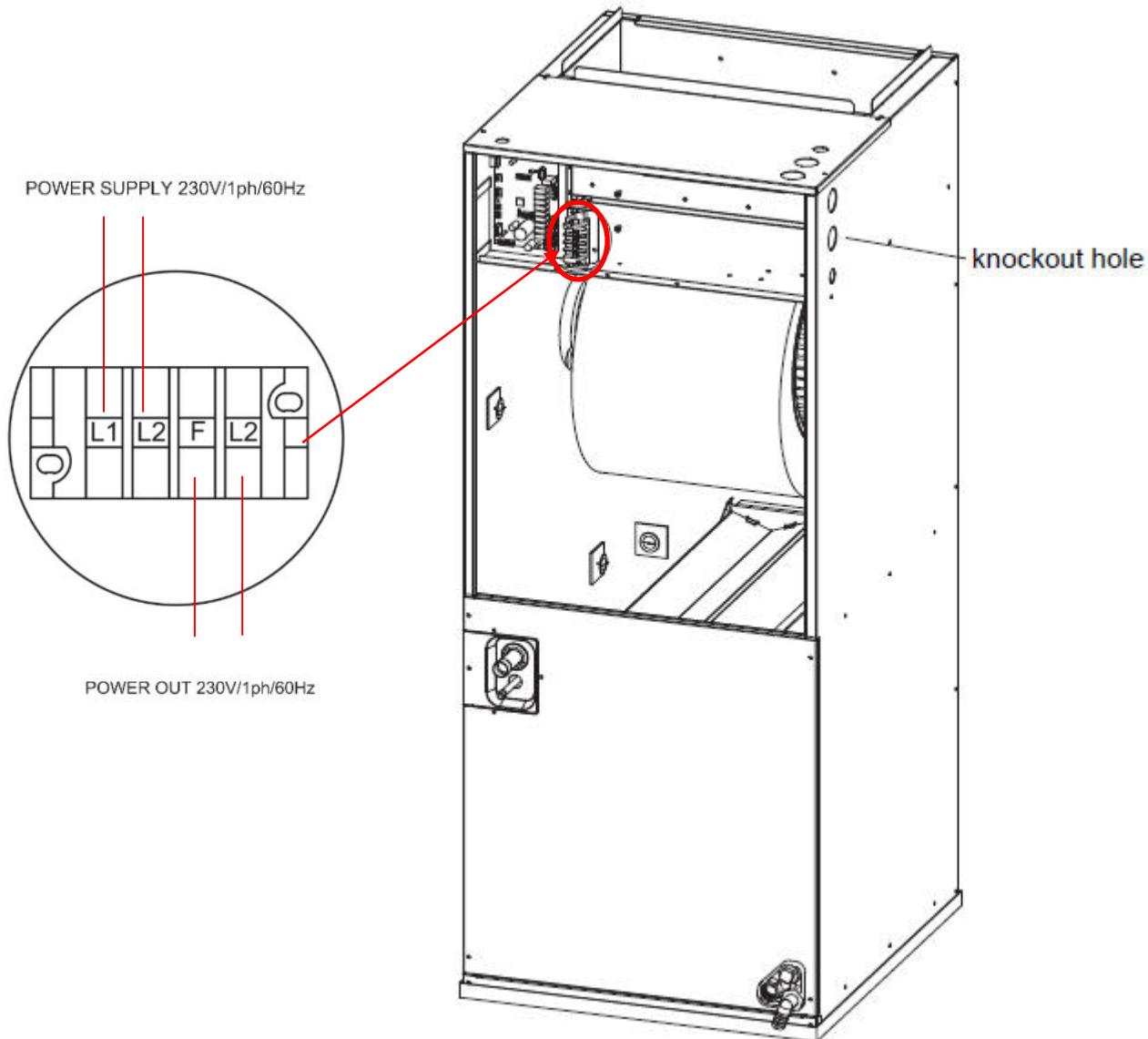
18-36K AHU

9.Electric Characteristics

Model	Indoor Units					
	Hz	Voltage	Min.	Max.	MCA	MOP
18K	60	208-230V	187V	253V	4.0	6.0
24K	60	208-230V	187V	253V	4.0	6.0
30K	60	208-230V	187V	253V	5.0	6.0
36K	60	208-230V	187V	253V	5.0	6.0

10.The Specification of Wiring

Note:


The cross-section areas of wires or lines should not be less than the corresponding ones listed in the table below; Besides, if the power wires is quite long from the unit, please choose the windings with larger cross-section guarantee the normal power supply.

Model	Indoor power wire /Diameter (AWG)	24V Signal wire Diameter (AWG)	Outdoor power wire /Diameter (AWG)
18K	3*16	18	3*14
24K	3*16	18	3*14
30K	3*16	18	3*12
36K	3*16	18	3*12

11. Field Wiring

1. To avoid the electrical shock, please connect the air conditioner with the ground lug.
2. The main power plug in the air conditioner has been joined with the ground wiring, please don't change it freely.
3. The power socket is used as the air conditioner specially.
4. Don't pull the power wiring hard.
5. When connecting the air conditioner with the ground, observe the local codes.
6. If necessary, use the power fuse or the circuit breaker or the corresponding scale ampere.

power supply wiring

During installation, a buzzer or alarm light needs to be installed and connected to the terminal of AHU F/L2. When the AHU detects refrigerant leakage, F/L2 will output 220V voltage. Therefore, the buzzer will receive the signal and respond in time. When the refrigerant concentration reaches the threshold, the indoor airflow will run at the highest gear and the outdoor unit will stop.

Thermostat wiring

Wiring for 3H and 2C thermostat

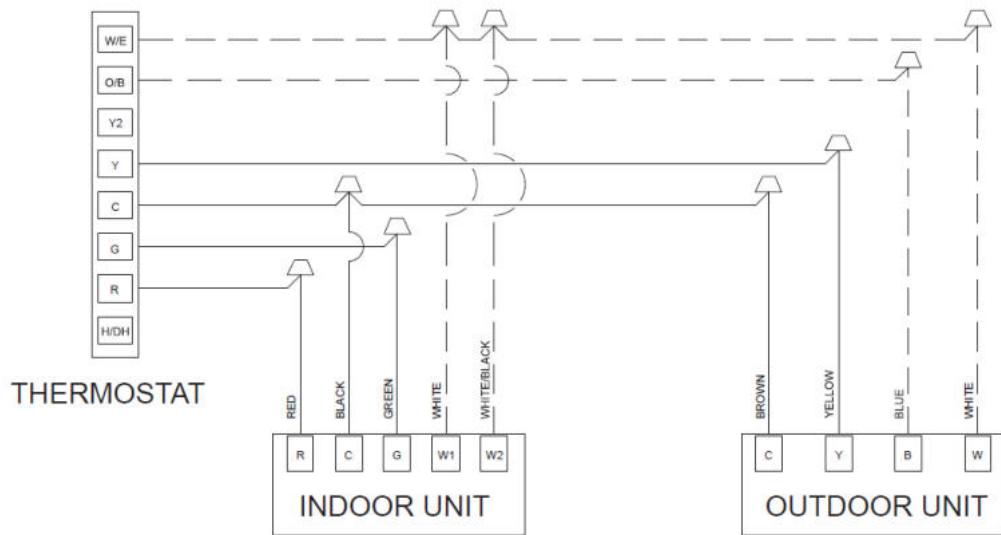


Figure 11.2 Control Wiring

Wiring for 4H and 2C thermostat

Figure 11.3 Control Wiring

Wiring for 3H and 1C thermostat

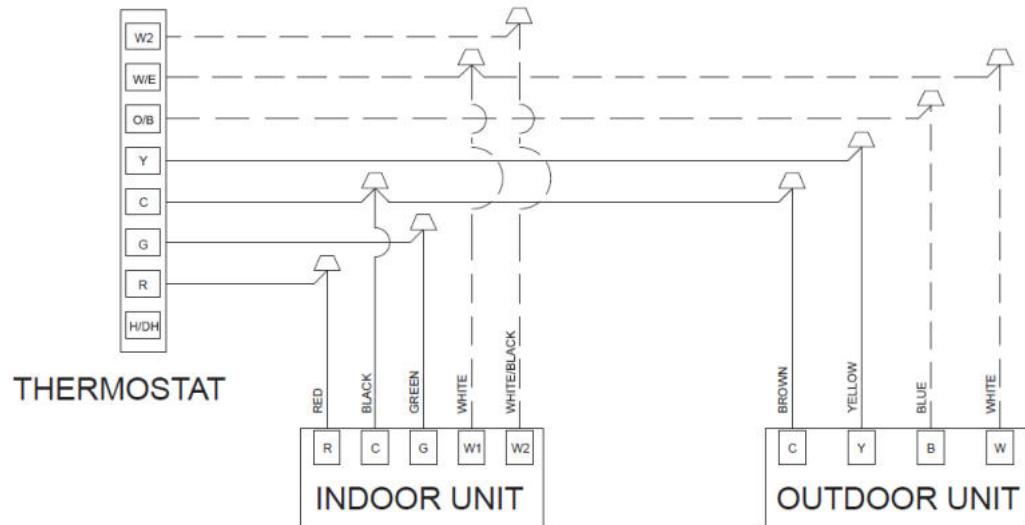


Figure 11.4 Control Wiring

Wiring for 2H and 2C thermostat

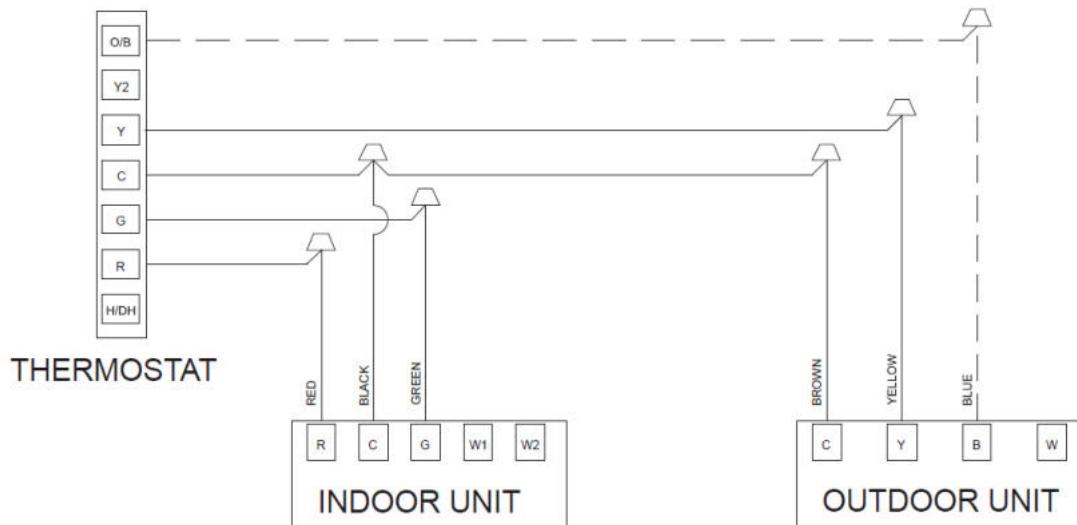


Figure 11.5 Control Wiring

Wiring for 1H and 1C thermostat

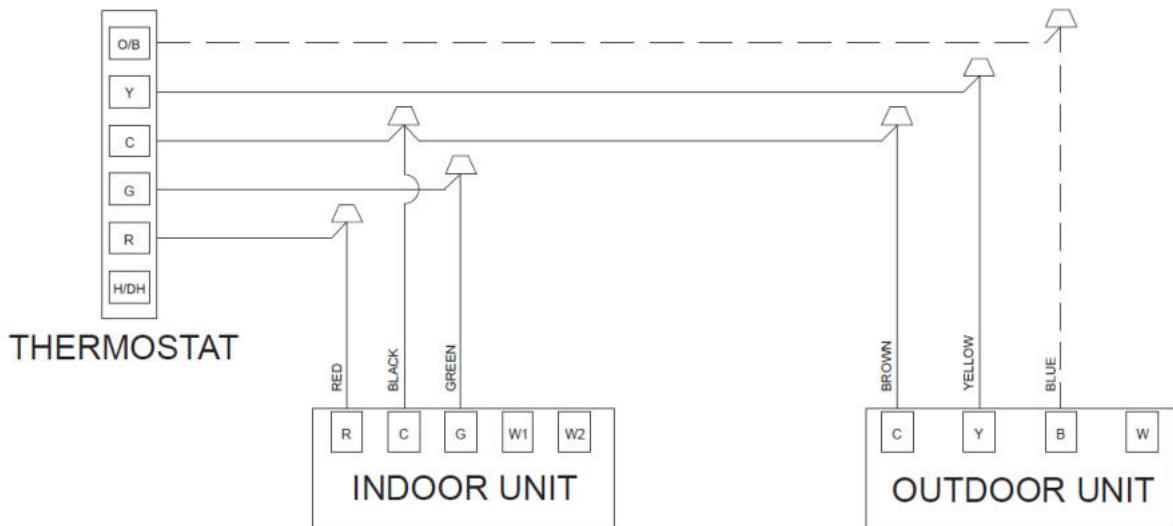


Figure 11.6 Control Wiring

Wiring for 2H and 1C thermostat

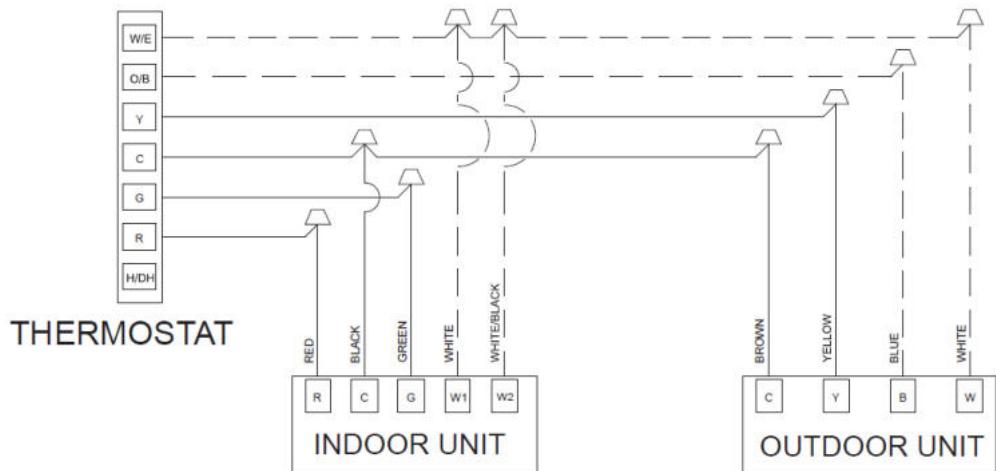
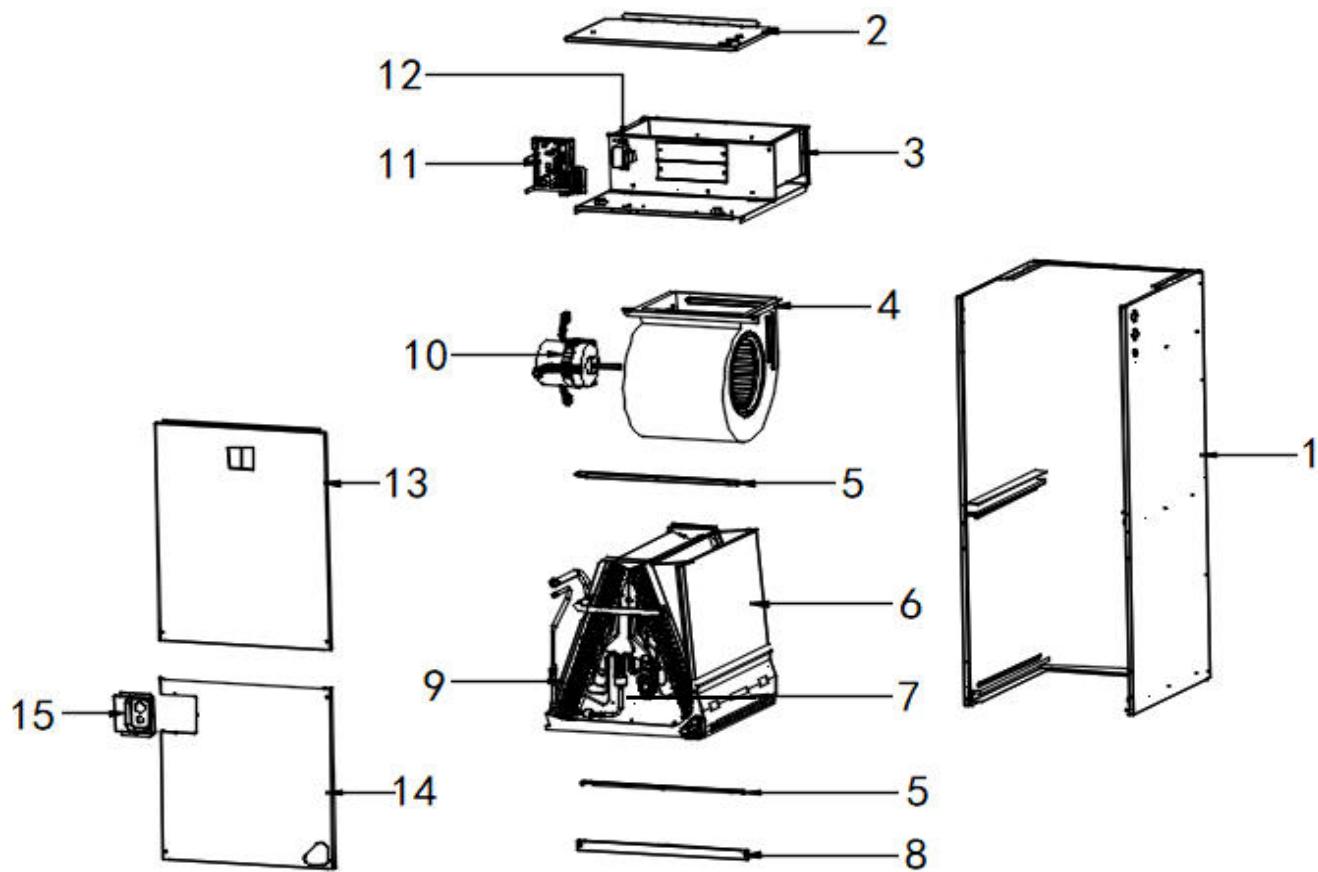
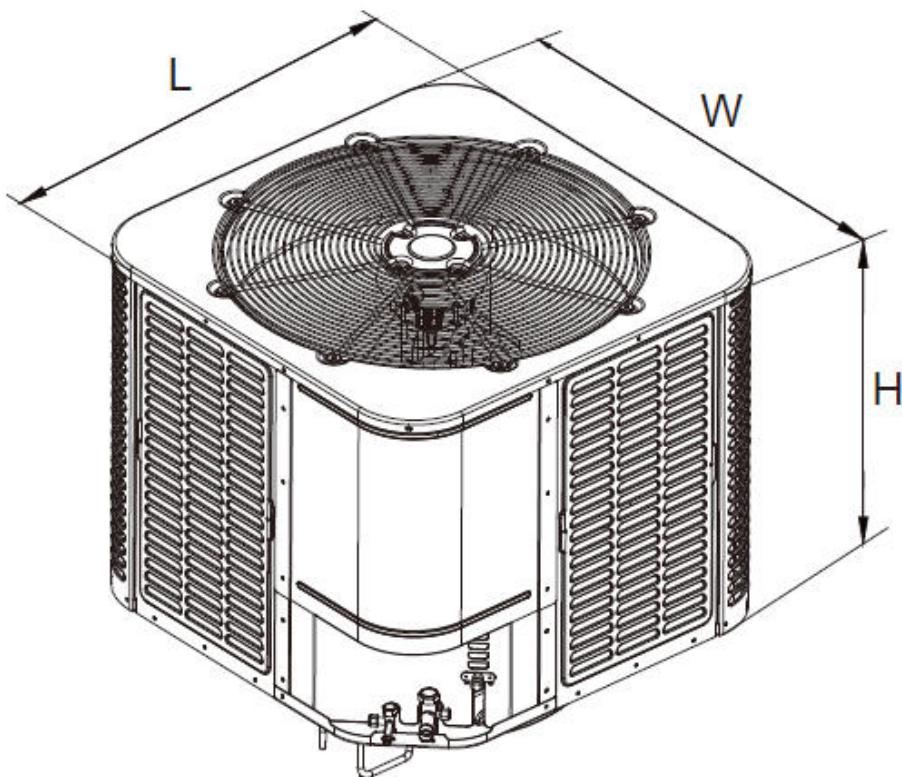



Figure 11.7 Control Wiring

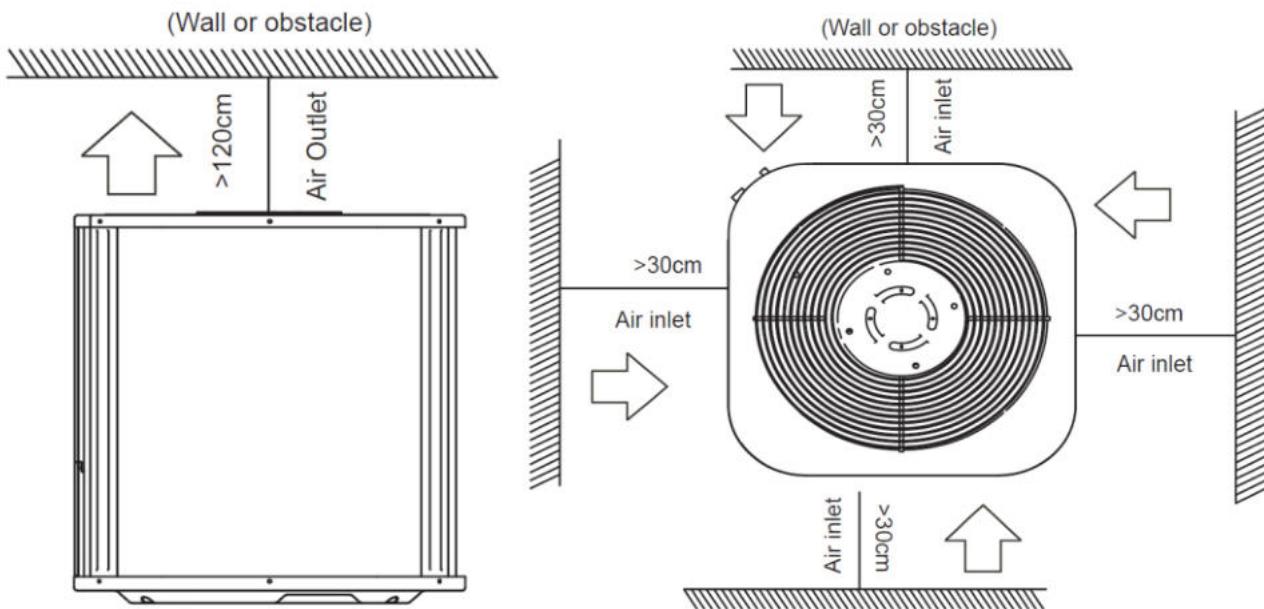
12.Exploded View

No.	Part Name	Quantity	No.	Part Name	Quantity
1	Rear Enclosure Assembly	1	9.3	Evaporator baffle	2
2	Control box cover assembly	1	10	DC Motor	1
3	Duct assembly	1	11	Indoor electric control box assembly	1
4	Right Volute Wind Wheel	1	11.1	Indoor main control board	1
5	Support bar	2	11.2	Ambient temperature sensor	1
6	Water pan components	1	11.3	Coil temperature sensor	1
7	Refrigerant leakage sensor	1	12	Transformers	1
8	Filter Cover plate	1	13	Upper side plate assembly	1
9	Evaporator components	1	14	Down side plate assembly	1
9.1	Evaporator output tube assembly	1	15	Pipe Cover plate assembly	1
9.2	Evaporator input tube assembly	1			

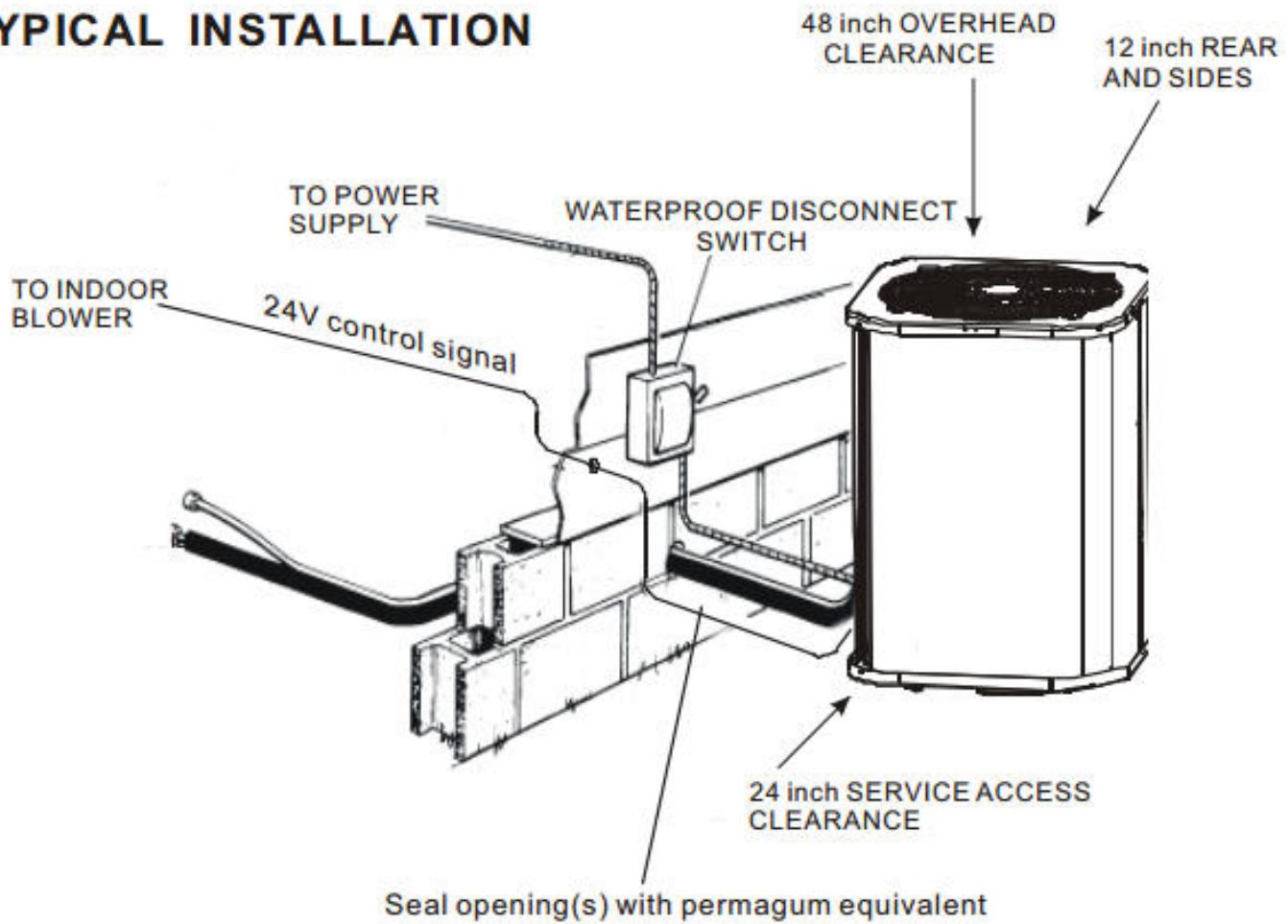

Part 3 Outdoor Unit

<u>1.Specification</u>	25
<u>2.Dimensions</u>	26
<u>3.Service Space</u>	27
<u>4.Wiring Diagrams.</u>	28
<u>5.Electric Characteristics</u>	29
<u>6.Operation Limits</u>	29
<u>7.Sound Levels</u>	29
<u>8.Exploded View</u>	30
<u>9.Troubleshooting</u>	32

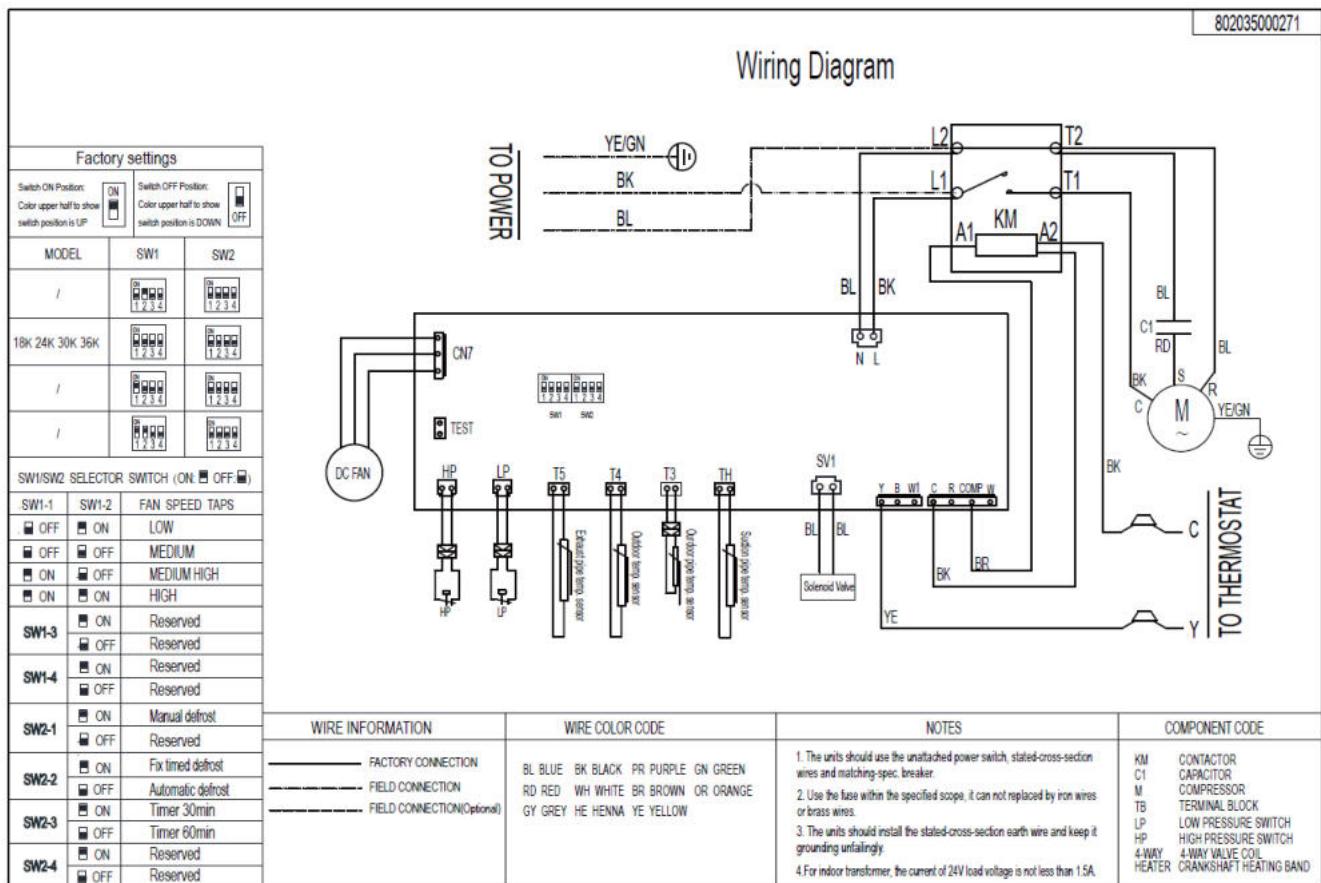
1. Specification


Model		BAR17-18-15	BAR17-24-15	BAR17-30-15	BAR17-36-15
Outdoor power supply	V/Ph/Hz	230V/1ph/60HZ			
Electrical Data	Min./Max.Voltage	187/253			
	MCA	12	16	18	22
	MOP	15	25	25	35
Cooling	Capacity(Btu/h)	17600	22800	28000	33000
	EER2(Btu/h.W)	11.7	11.7	11.7	11.7
	SEER2(Btu/h.W)	14.3	14.3	14.3	14.3
Compressor	Type	Rotary			
	Stage	/			
	Capacity(Btu/h)	19073	25863	24771	36440
	Input(W)	1290.00	1740.00	2485.00	2450.00
	Rated current(RLA)(A)	7.80	11.00	12.10	15.20
	Locked rotor Amp(LRA)(A)	39.00	55.00	58.00	72.00
Outdoor coil	Fin material	Hydrophilic Aluminium Fin			
	Tube material	Inner Grooved			
Outdoor fan motor	Type	DC			
	Output (W)	120	120	200	200
	Output (HP)	1/6	1/6	1/4	1/4
	Full Load Amps(FLA)(A)	1.5	1.5	2.4	2.4
Outdoor Unit	Unit (WxHxD) (inch)	21-4/5×25×21-4/5		29-1/7×25×29-1/7	
	Packing (WxHxD) (inch)	22-3/5×26×22-3/5		30×26×30	
	Net / Gross weight(lbs)	111/116		139/147	146/154
Refrigerant system	Liquid side (inch)	Φ3/8			
	Gas side (inch)	Φ3/4			
	Max. refrigerant pipe length (ft)	131			
	Max. difference in level (ft)	66			
	Refrigerant Type	R32			
Operation temp range	Cooling (°F)	57-118			

2. Dimensions

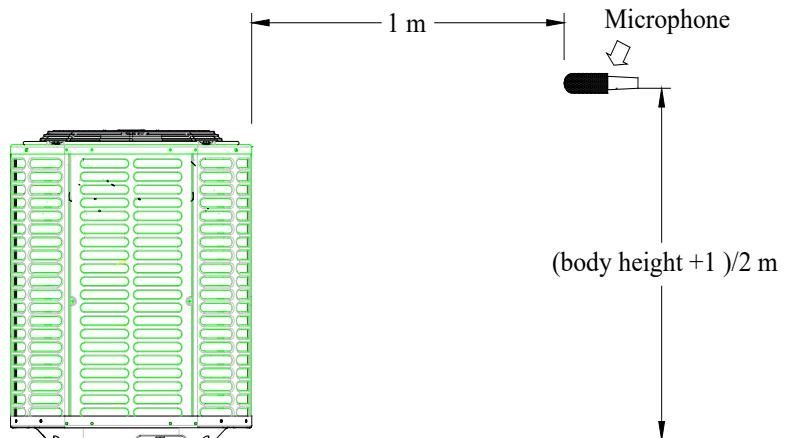


model	HxWxL (inches)
18K/24K	25 x 21-4/5 x 21-4/5
30K/36K	25 x 29-1/7 x 29-1/7


3. Service Space

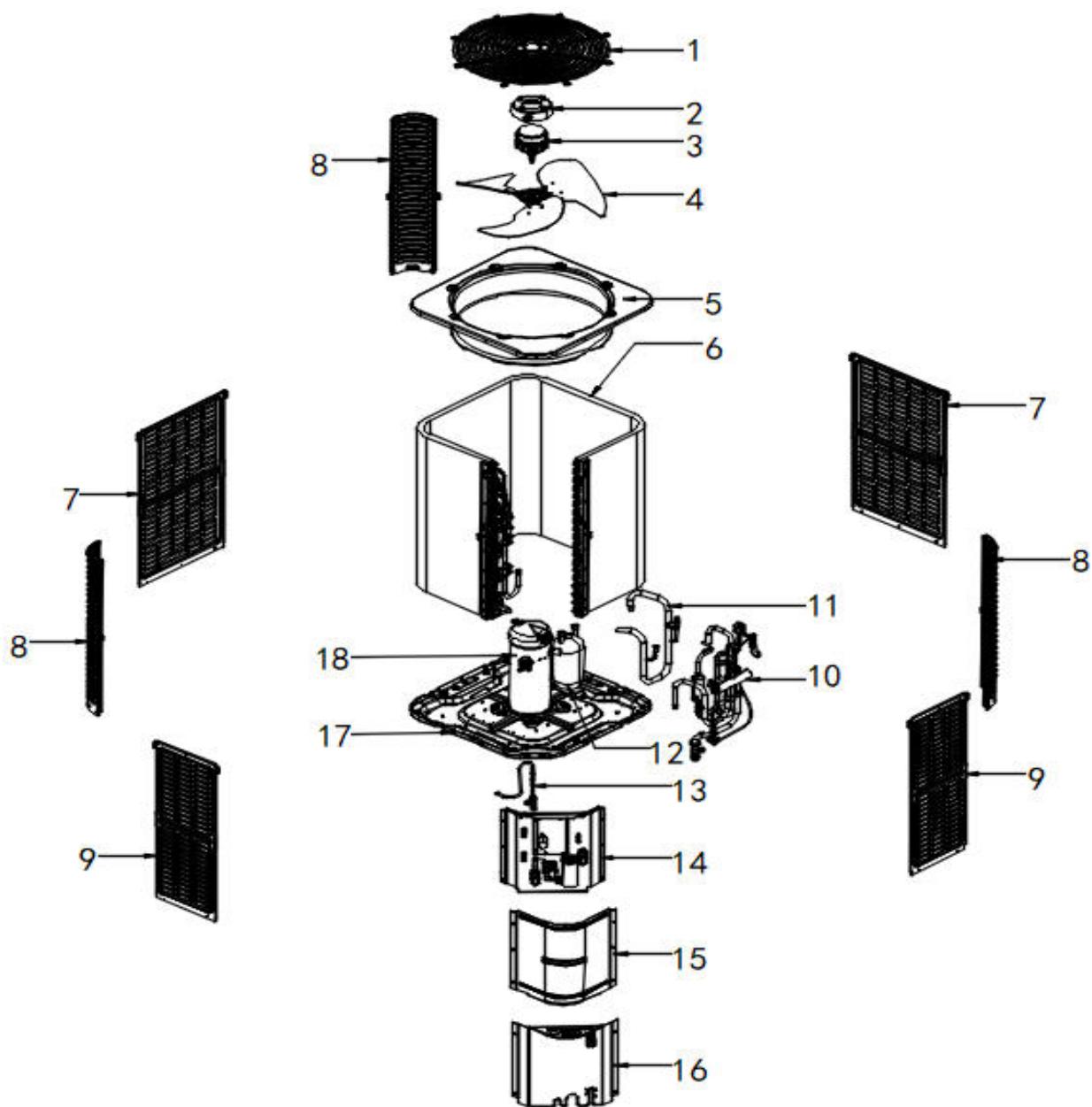
TYPICAL INSTALLATION

4.Wiring Diagrams.


5. Electric Characteristics

Model	Outdoor Unit					
	Hz	Voltage	Min.	Max.	MCA	MOP
18K	60	208~230V	187V	253V	12	15
24K	60	208~230V	187V	253V	16	25
30K	60	208~230V	187V	253V	18	25
36K	60	208~230V	187V	253V	22	35

6. Operation Limits


Operation mode	Outdoor temperature(°F)	Room temperature(°F)
Cooling operation	57—118	61—90

7. Sound Levels

Note: Sound level is measured at a point 1 m in front of the unit, at a height of $(\text{Unit body height} + 1)/2$ m.

8.Exploded View

No.	Part Name	Quantity	No.	Part Name	Quantity
1	Cover net	1	14	electric control box components	1
2	DC Motor Mount	1	14.1	Electronic control board	1
3	Outdoor motor	1	13.2	High pressure switch	1
4	Axial-flow fan	1	13.3	Low pressure switch	1
5	Top cover assembly	1	13.4	Condenser temperature sensor (T3)	1
6	Condenser assembly	1	13.5	Ambient temperature sensor (T4)	1
6.1	Condenser inlet pipe assembly	1	13.6	Exhaust temperature sensor (T5)	1
6.2	Condenser output pipe assembly	1	13.7	Return temperature sensor (TH)	1
7	Rear side-panel	2	13.8	Solenoid valve	1

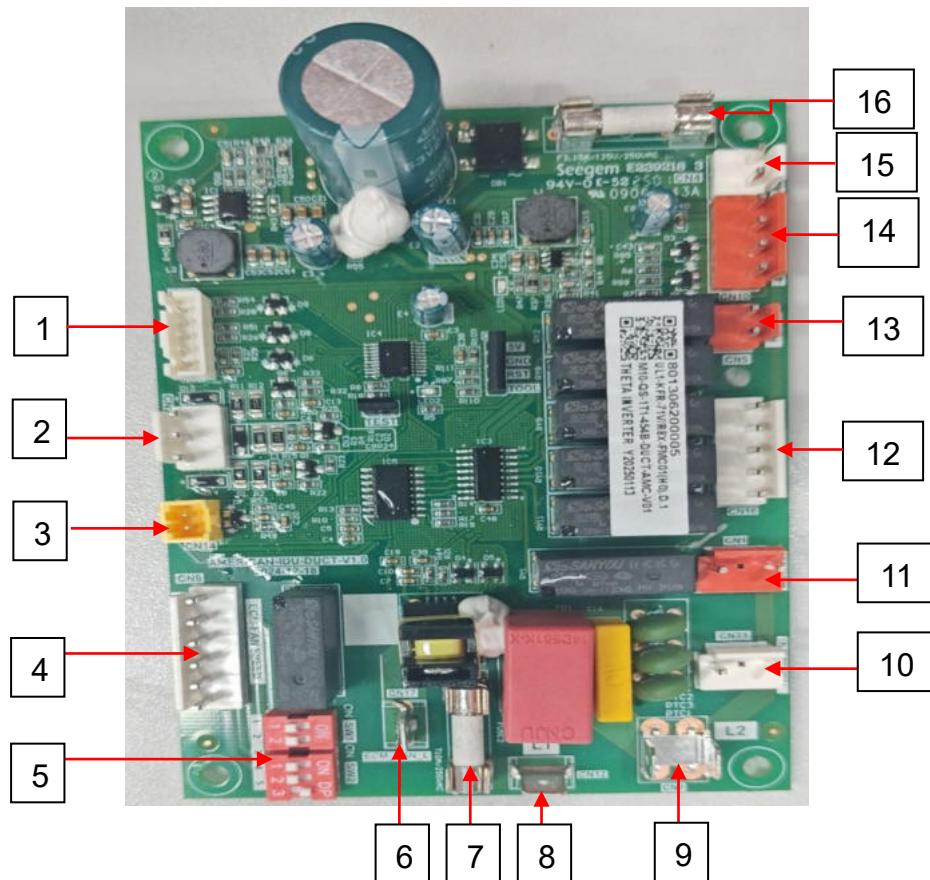
R32 60Hz 20 SEER Universal Outdoor Series Technical Manual

8	Support board	3	13.9	AC contactor	1
9	Left side-panel	2	13.1 0	Compressor capacitor	1
10	Four way valve assembly	1	15	Top panel	1
11	Suction air pipe weld assembly	1	16	Bottom side panel	1
12	Gas-liquid separator	1	17	Chassis assembly	1
13	High pressure valve assembly	1	18	Compressor	1

9.Troubleshooting

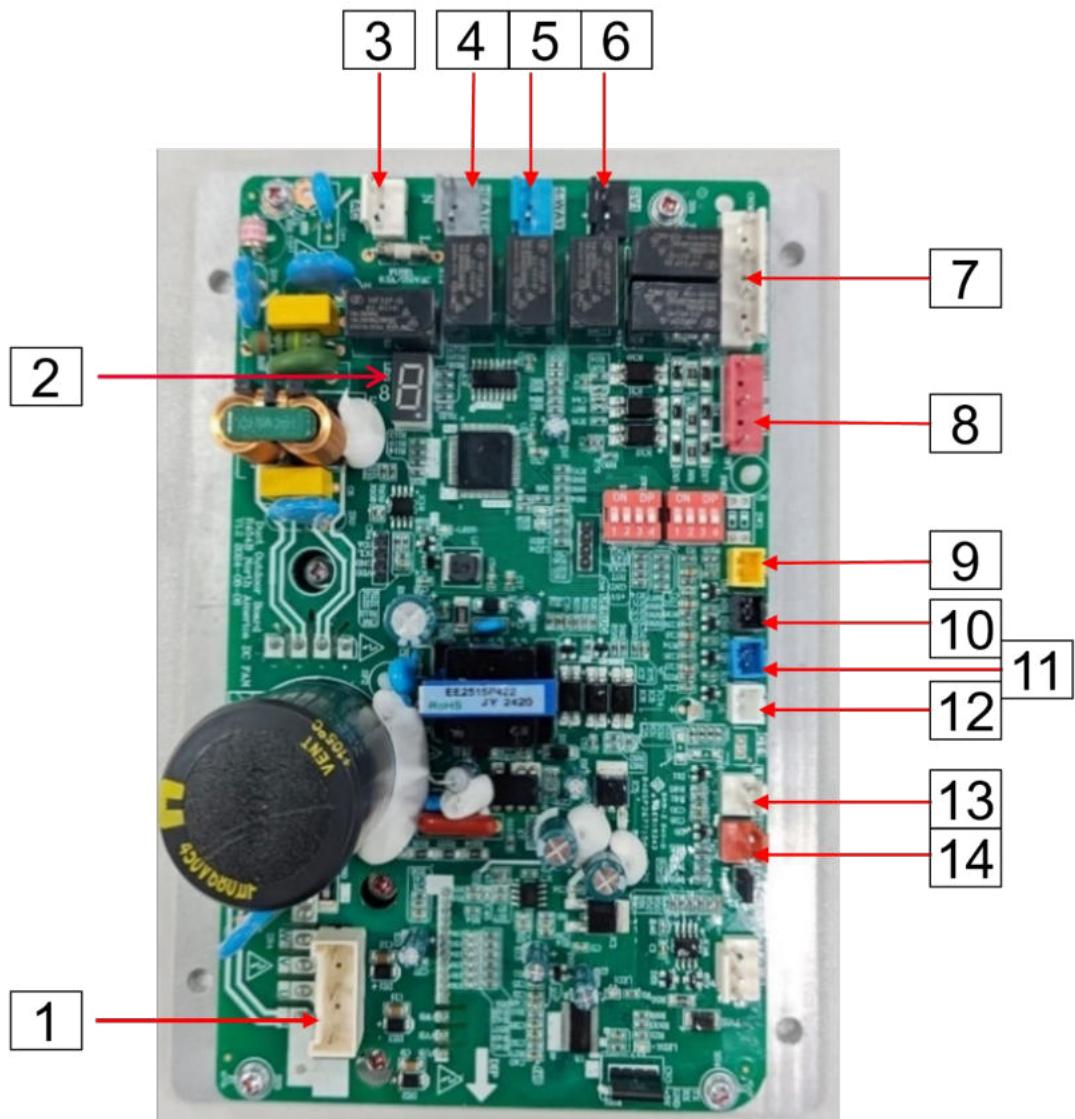
9.1 Error code

Indoor unit


	LED Status	System status
Model	LED light always on	Runing Mode
System warning	LED light 1 Flash/Cycle	R454B refrigerant leak Protection
	LED light 2 Flash/Cycle	Anti-freezed Protection
	LED light 3 Flash/Cycle	Evaporator Temperature Sensor Error
	LED light 4 Flash/Cycle	R454B refrigerant sensor Error
	LED light 5 Flash/Cycle	ECM motor Error

Outdoor unit

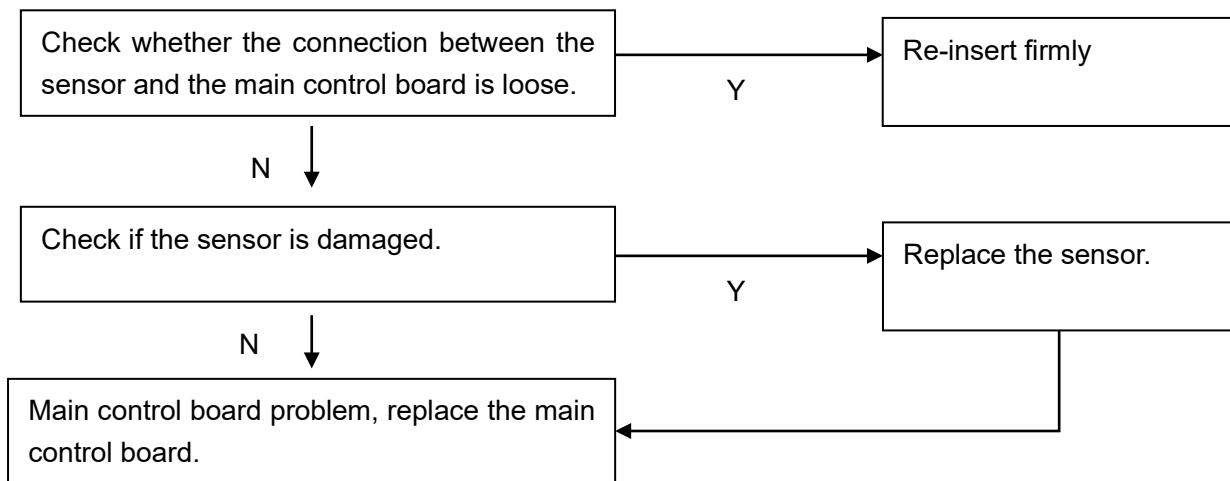
	Digital tube display content	System status
Model	0	Standby Mode
System warning	1	Cooling Mode
	2	Heating Mode
	3	T3 Sensor Error
	4	T4 Sensor Error
	5	T5 Sensor Error
	6	Low Pressure Protection
	7	High Pressure Protection
	8	Outdoor Fan Error
	9	T3 High Temperature Protection
	A	T4 Ambient Temperature Protection
	C	T5 High Compressor Discharge Temperature Protection
	E	TH Sensor Error
	F	TH Anti-freezed Protection
	L	Low Voltage Protection
System lock	6.	6 times Low Pressure Protection within 60 minutes
	7.	6 times High Pressure Protection within 60 minutes
	8.	4 times Outdoor Fan Error within 60 minutes
	C.	3 times High Compressor Discharge Temperature Protection within 60 minutes
	L.	2 times Low Voltage Protection within 120 minutes


9.2 Indoor unit control board

18-36k

NUM	Port definition	NUM	Port definition
1	Reserve	9	Power supply L2
2	24V terminal connected to 24V thermostat	10	Transformer input(230v)
3	T2 sensor	11	Alarm output (230V)
4	ECM motor	12	Electric heater port (connected to electric heater)
5	Function switch	13	24V thermostat power supply R, C
6	Power supply of motor	14	Refrigerant leakage sensor
7	Fuse	15	Transformer output(24v)
8	Power supply L1	16	Fuse

9.3 Outdoor unit control board


NUM	Port definition	NUM	Port definition
1	DC motor communicate port	8	24V communication (Y/B)
2	Digital display tube	9	Return air temperature sensor
3	Power supply	10	Condenser temperature sensor
4	Crankshaft heating belt	11	ambient temperature sensor
5	Four-way valve	12	Exhaust temperature sensor
6	Solenoid valve	13	Low pressure switch
7	24V communication (W/C)	14	High pressure switch

9.4 Troubleshooting guide

9.4.1 T1/T2/ sensor fault, R32 sensor fault (Indoor unit sensor failure)

9.4.2 T3/T4/T5 sensor fault (Outdoor unit sensor failure)

Reason: Sensor reading error

- Confirm whether the sensor is firmly connected and check the sensor connector to ensure it is firmly connected.
- Unplug the sensor and use a multimeter to measure the resistance to check whether it is open circuit or short circuit. If so, replace the sensor; if not, replace the main control board.

- Sensor resistance table see Appendix 1

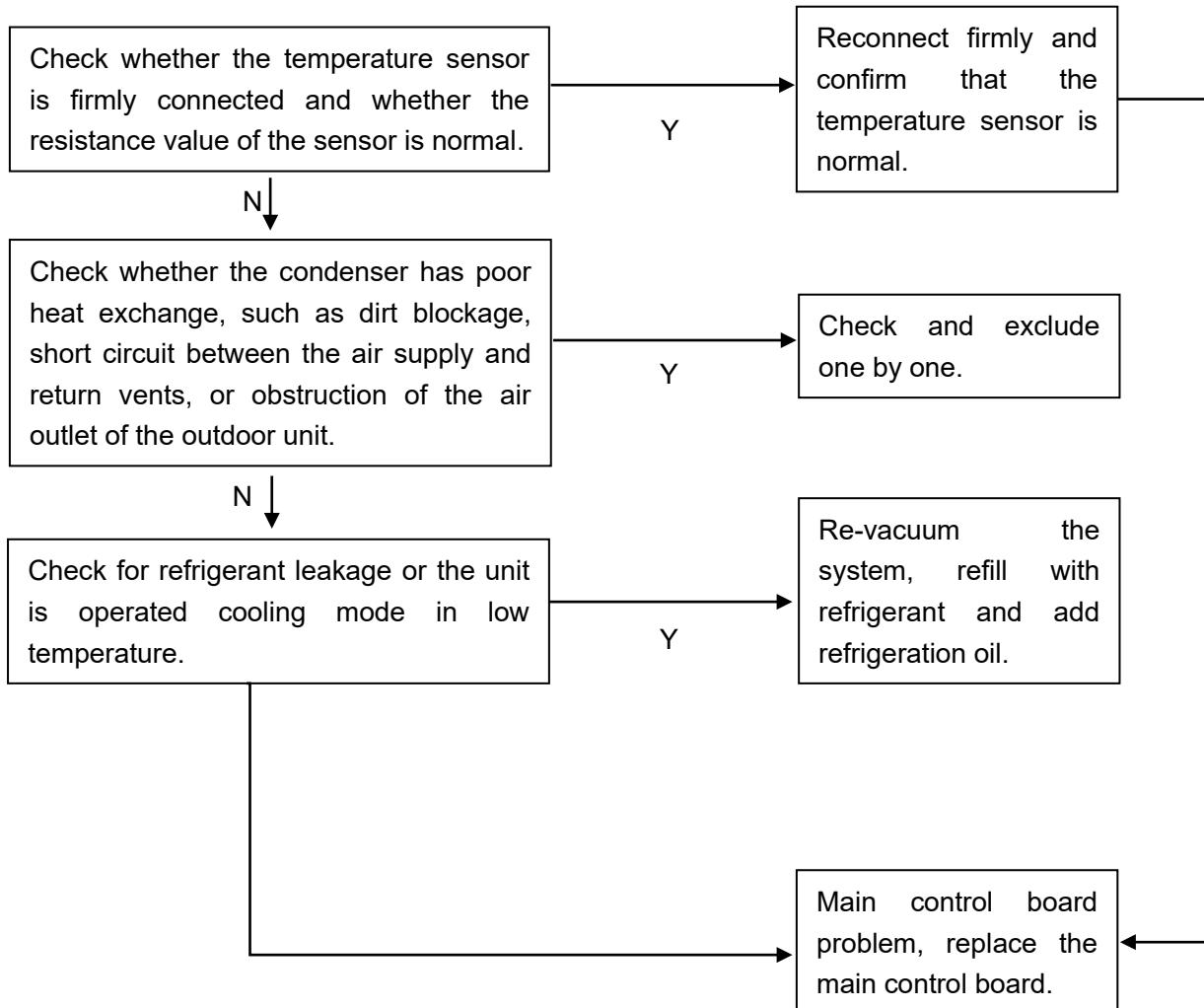
9.4.3 Refrigerant leakage fault

Reason: Refrigerant leakage detected

- Firstly, open windows for ventilation and extinguish indoor open flames.
- Then check if there is any leakage in the copper pipe. If it is confirmed to be leaking, the pipe needs to be repaired by welding.
- If no leakage is found, it may be a false alarm fault on the main control board. Replace the indoor board first. If the fault is not resolved, replace the refrigerant sensor.

9.4.4 Indoor control board chip failure

Reason: The indoor control board chip is broken


- Replace the indoor control board.

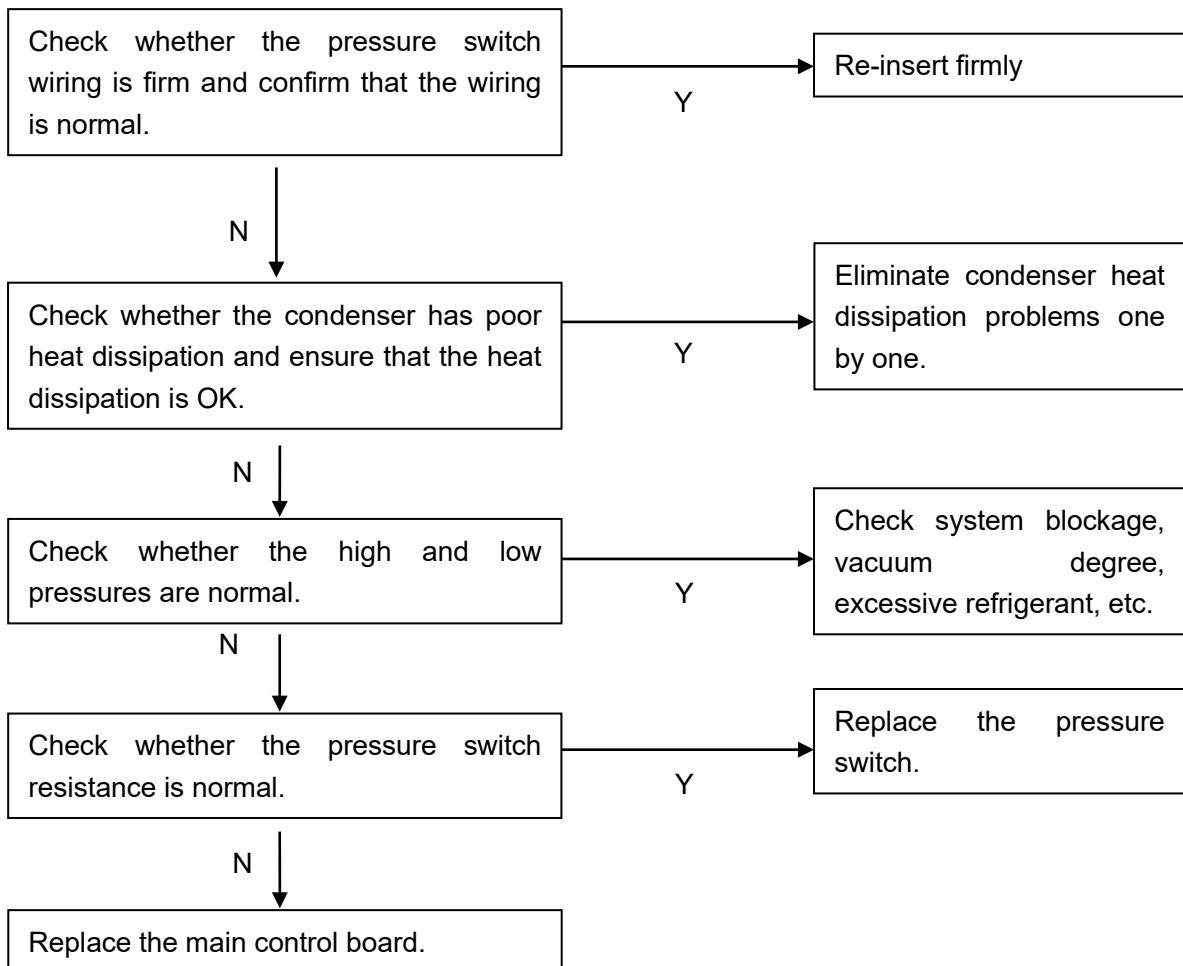
9.4.5 Anti-freeze protection

Reason:

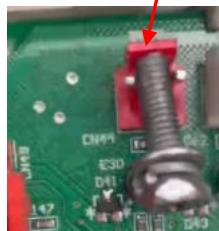
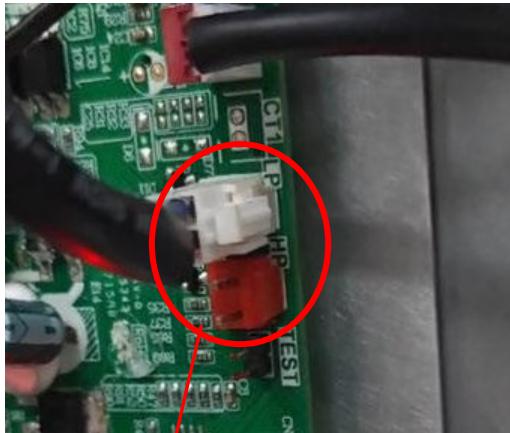
Indoor unit: The T2 sensor detects that the evaporator temperature is too low($T2 < 0^{\circ}\text{C}$)

Outdoor unit: The TH sensor detects that the gas return temperature is too low($T2 < 0^{\circ}\text{C}$)

- Check if the actual temperature of the evaporator is very low or even frozen.
- If the evaporator is frozen, please check if the air conditioning system is blocked or if the refrigerant is leaking, etc. If no, then you need to clean the pipes, re-evacuate, and recharge refrigerant.
- If the evaporator is not frozen, use a multi-meter to measure whether the resistance of the temperature sensor is normal (see the appendix for the R-T table). If it is not normal, you need to replace the sensor.
- If the sensor resistance is normal, then you need to replace the main control board of the indoor unit.

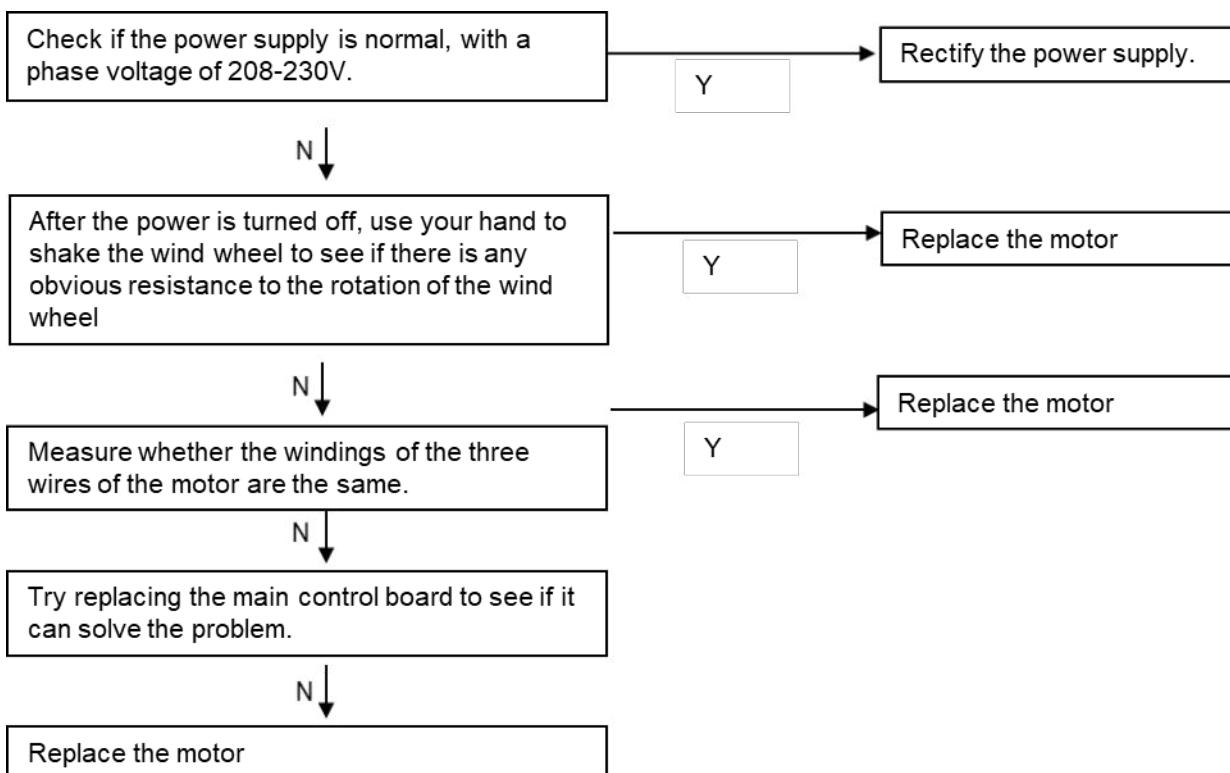

9.4.6 Indoor fan protection

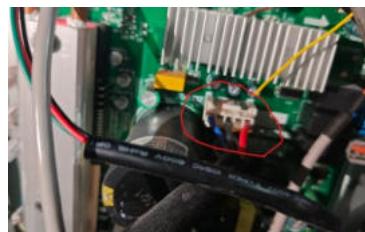
Reason: The DC fan motor of the indoor unit has issue



- Replace the control board of the indoor unit.
- If not resolved, replace the motor.

9.4.7 High /Low pressure protection

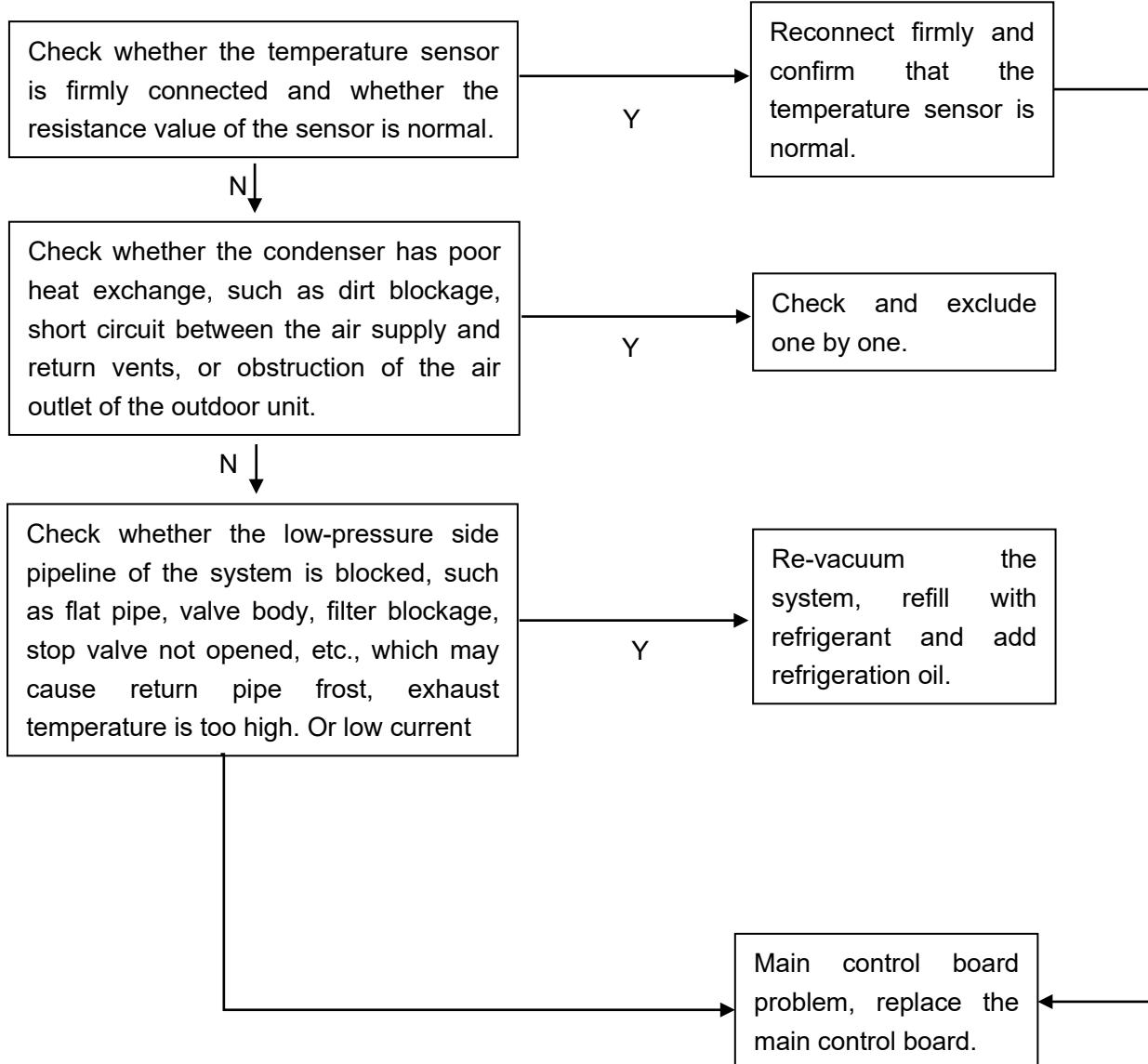
Cause: The high and low-pressure switch is continuously in the disconnected state

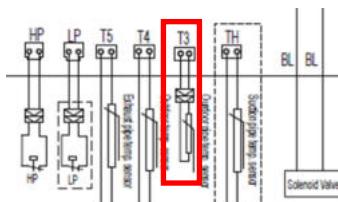

- Then turn off the power of the machine and then turn on the power, and use the controller to start the machine.
- If the machine fails after running for a while, there may be a problem with the refrigerant system and the system needs to be checked.
- If the machine fails as soon as it is powered on, there may be a problem with the pressure switch or the outdoor main board.
- Use a jump cap or metal short-circuit to connect the pressure switch port of the electronic control board, then turn off the power and restart the machine, and observe whether the fault disappears.
- If the fault is resolved, replace the pressure switch.
- If the fault is not resolved, replace the main control board.


The high-pressure switch port can be short circuited by using a screw clamped between two pins.

9.4.8 DC fan malfunction

Cause: Abnormal detection of fan motor.

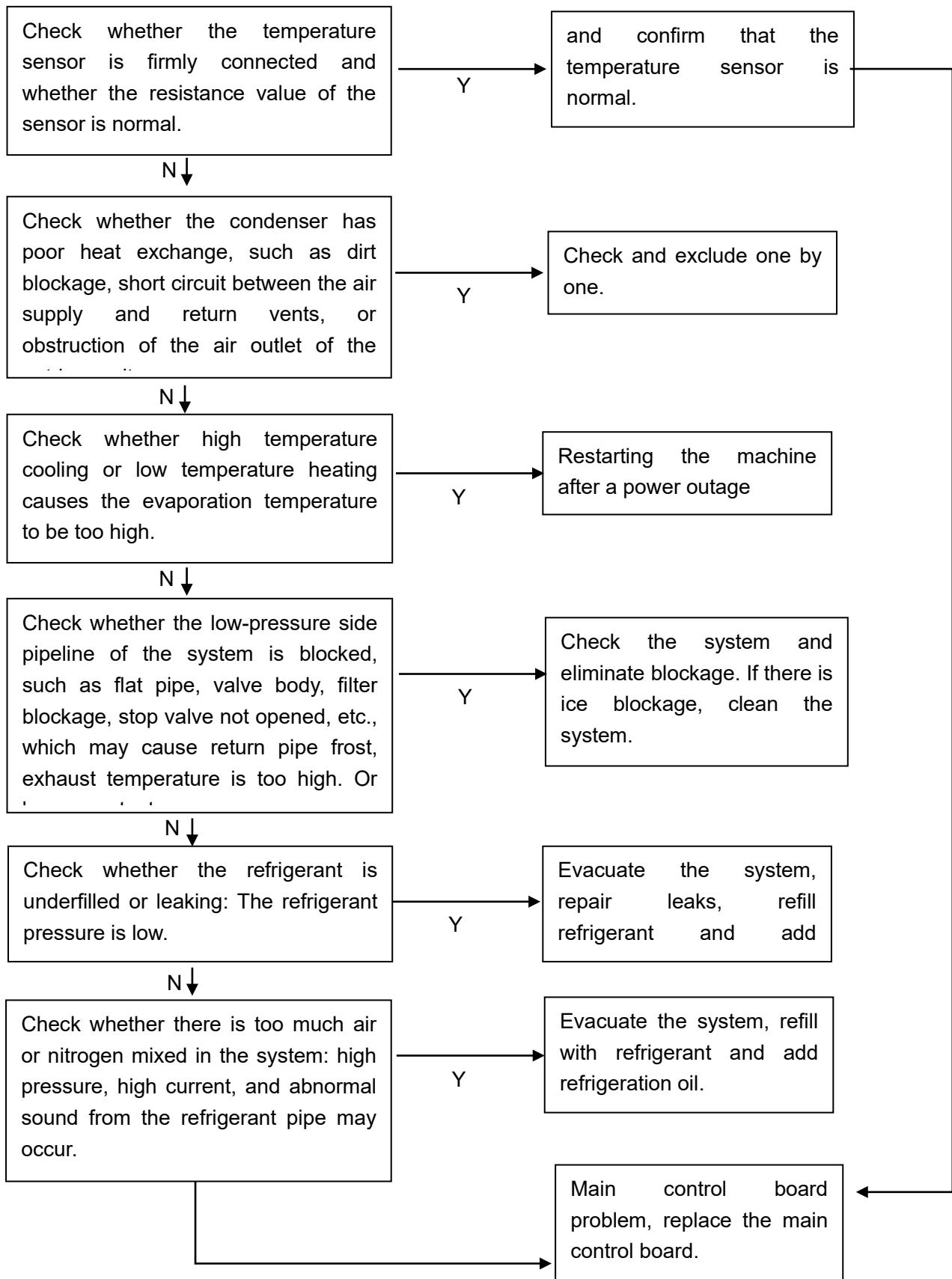

- Check if the power supply is normal, with a phase voltage of 208-230V, and confirm that the power supply is functioning properly.


- After the power is turned off, use your hand to shake the wind wheel to see if there is any obvious resistance to the rotation of the wind wheel. If you find that the wind wheel does not rotate smoothly when you turn it by hand, replace the motor, otherwise proceed to the next step.
- Measure whether the windings of the three wires of the motor are the same. If the winding cannot be measured, or the measured resistance is different, replace the motor.
- Try replacing the main control board to see if it can solve the problem.
- Replace the motor.

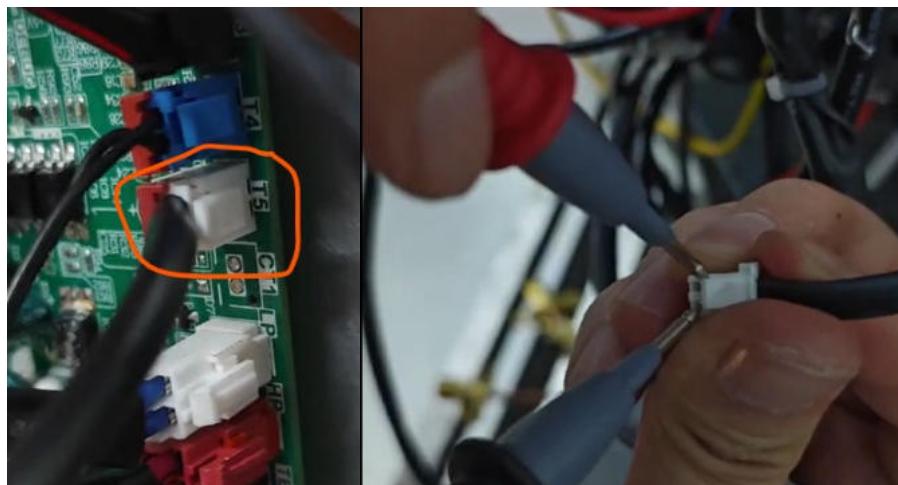
9.4.9 Outdoor coil temperature over-high protection (cooling mode) $T3 > 60^\circ\text{C}$

Cause: The condenser temperature sensor detected that the temperature was too high

- Check if the heat dissipation of the condenser is normal, ensuring that there are no dirty blockages, short circuits in the air supply and return ports, etc.
- Measure the resistance of the temperature sensor and check whether it drifts by comparing it with the resistance table. If it drifts, replace the sensor. Please see the appendix for R-T table

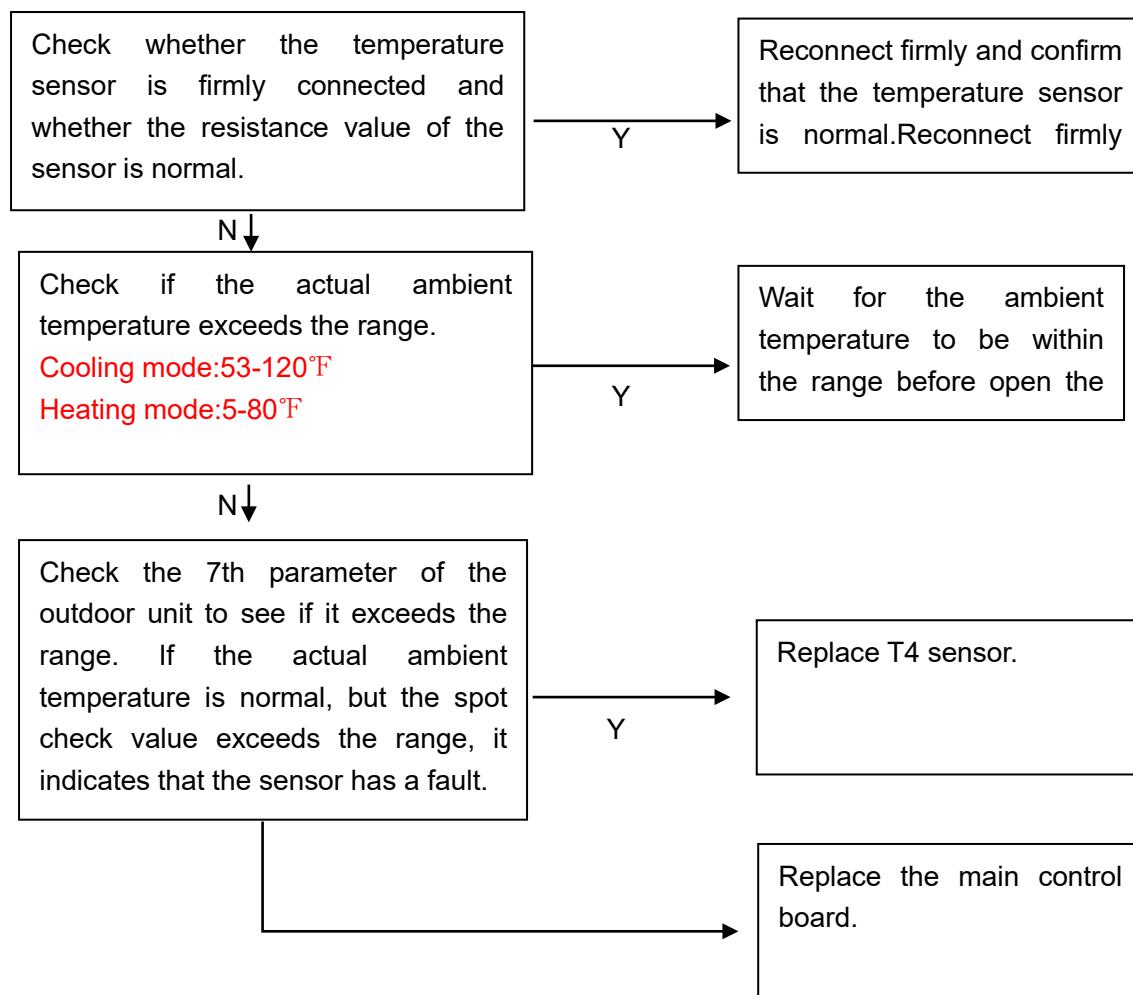

- If the temperature sensor resistance is normal, check the exhaust temperature in item 8 and compare it with the actual exhaust temperature (use a infrared thermometer to measure the exhaust temperature). If the temperature of the main control board is unreasonable, replace

the main control board.


➤ If the above steps are normal, check whether the refrigerant system is normal, such as return air blockage, poor evaporation, compressor wear, etc.

9.4.10 Exhaust temperature too high protection $>120^{\circ}\text{C}$

Cause: The exhaust temperature sensor reads a temperature that is too high



- Connect a pressure gauge to measure whether the return gas pressure is too low (normally 0.7-0.9MPa). If the pressure is too low, add refrigerant.
- Measure the resistance of the temperature sensor and check whether it drifts by comparing it with the resistance table. If it drifts, replace the sensor. Please see the appendix for R-T table
- If the above steps are normal, check whether the refrigerant system is normal, such as return air blockage, poor evaporation, compressor wear, etc.

9.4.11 Overtemperature protection

Cause: Outdoor sensor T4 detects that the ambient temperature exceeds the range

Part 4 Function introduction

<u>1.Electrical Components Description</u>	47
<u>2.Outdoor gas return temperature Anti-Freezing Function</u>	47
<u>3.R32 Leakage Detection Function</u>	48
<u>4.Indoor Coil Anti-Freezing Function</u>	48

1. Electrical Components Description

Temperature Sensor

T2: Indoor Coil Temperature

- Anti-Cold Air Function (heating mode)
- Anti-Freezing Function

T3: Outdoor Coil Temperature

- High/Low temperature protection
- Outdoor fan control (cooling mode)
- Defrost control (heating mode)

T4: ODU Ambient Temperature

- Operating condition permission
- Defrosting condition (heating mode)
- Outdoor fan control (heating mode)

T5: Compressor Discharge Temperature

- High temperature / Low super heat protection
- Electronic Expansion Valve (EEV) control

TH: Gas side return Temperature

- Anti-freeze protection

2. Outdoor gas return temperature Anti-Freezing Function

The function utilizes the Outdoor gas return temperature (TH) to determine whether the indoor coil is freezing or not. The feature prevents the unit running at low evaporating temperature as well as low suction super heat.

Only valid in cooling mode and after the compressor has been running for 3 minutes.

When the gas return temperature $TH \leq TH1$ for "t" minutes, or the gas return temperature $TH \leq TH2$, the compressor and the outdoor fan will be stopped, and the anti-freezing protection will be reported

	TH1	TH2	t
$T4 \leq 8^{\circ}\text{C}$	-1	-4	0
$8^{\circ}\text{C} < T4 \leq 16^{\circ}\text{C}$	-1	-4	$20 + 5 * (T4 - 12)$
$16^{\circ}\text{C} < T4 \leq 35^{\circ}\text{C}$	$-1 + 0.15 * (T4 - 16)$	$-4 + 0.3 * (T4 - 16)$	40
$T4 > 35^{\circ}\text{C}$	$2 + 0.2 * (T4 - 35)$	$2 + 0.1 * (T4 - 35)$	40

When the return air temperature is greater than 10 degrees or the shutdown time reaches 6 minutes, start the compressor and external fan (the minimum start interval is 5 minutes).

3.R32 Leakage Detection Function

The function utilizes a R32 refrigerant sensor to detect the R32 concentration. Terminal F/L2 is reserved for connecting buzzer if needed.

When R32 leakage occur in the indoor coil and the concentration is above 6.7%LEF, the unit will perform as the following:

- A. Cut off power to thermostat to stop compressor operation.
- B. Electric Heat kit will be turned off.
- C. High voltage will be output between terminal F and terminal L2.
- D. The indoor fan is running at high wind speed, and at the same time, the fault light on the indoor main board is flash.

4. Indoor Coil Anti-Freezing Function

The function utilizes the indoor coil sensor(T2) to determine whether the indoor coil is freezing or not. The feature prevents the unit running at low evaporating temperature as well as low suction super heat.

When all the following conditions are met, the Anti-Freezing Function will activate, and the compressor will be turned off.

- A. $T2 < 32^{\circ}\text{F}$ Duration exceeding 1 minute.
- B. $T2 \leq 26.6^{\circ}\text{F}$ Duration exceeding 30 seconds.

when $T2 \geq 42.8^{\circ}\text{F}$, the Anti-Freezing Function will deactivate:

Part 5 Installation

<u>1.Precaution on Installation</u>	50
<u>2. Oil return bend installation</u>	52
<u>3.Vacuum Dry and Leakage Checking</u>	53
<u>4.Additional Refrigerant Charge</u>	55
<u>5.Insulation Work</u>	57
<u>6.Test Operation</u>	59

1. Precaution on Installation

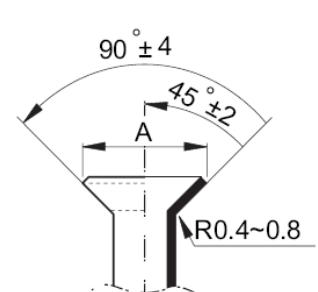
1.1. Measure pipe length

Measure the necessary length of the connecting pipe and make it by the following way.

Connect the indoor unit at first, then the outdoor unit.

Bend the tubing in proper way.

Please refer to the table below for the length dimensions of the connection pipe


Table 1.1.1

Refrigerant Piping		Capacity (Btu/h)			
		18K	24K	30K	36K
Liquid-Vapor	In.	3/8-3/4	3/8-3/4	3/8-3/4	3/8-3/4
Max. Refrigerant Line Length*	Ft.	131			
Max. Vertical Lift	Ft.	66			

CAUTIONS:

Daub the surfaces of the flare pipe and the joint nuts with frozen oil, and wrench it for 3~4 rounds With hands before fasten the flare nuts.

Be sure to use two wrenches simultaneously when you connect or disconnect the pipes.

Pipe gauge	Tightening torque	Flare dimension A Min (mm) Max		Flare shape
Φ6.35	15~16N.m (153~163 kgf.cm)	8.3	8.7	
Φ9.52	25~26N.m (255~265kgf.cm)	12.0	12.4	
Φ12.7	35~36N.m (357~367kgf.cm)	15.4	15.8	
Φ15.9	45~47N.m (459~480 kgf.cm)	18.6	19.1	
Φ19.1	65~67N.m (663~684kgf.cm)	22.9	23.3	

The stop value of the outdoor unit should be closed absolutely (as original state). Every time you connect it, first loosen the nuts at the part of stop value, then connect the flare pipe immediately (in 5 minutes). If the nuts have been loosened for a long time, dusts and other impurities may enter the pipe system and may cause malfunction later. So please expel the air out of the pipe with refrigerant before connection.

Expel the air after connecting the refrigerant pipe with the indoor unit and the outdoor unit. Then fasten the nuts at the repair-points.

1.2. Locate The Pipe

Drill a hole in the wall (suitable just for the size of the wall conduit), then set on the fittings such as the wall conduit and its cover.

Bind the connecting pipe and the cables together tightly with binding tapes. Do not let air in, which will cause water leakage by condensation.

Pass the bound connecting pipe through the wall conduit from outside. Be careful of the pipe allocation to do no damage to the tubing.

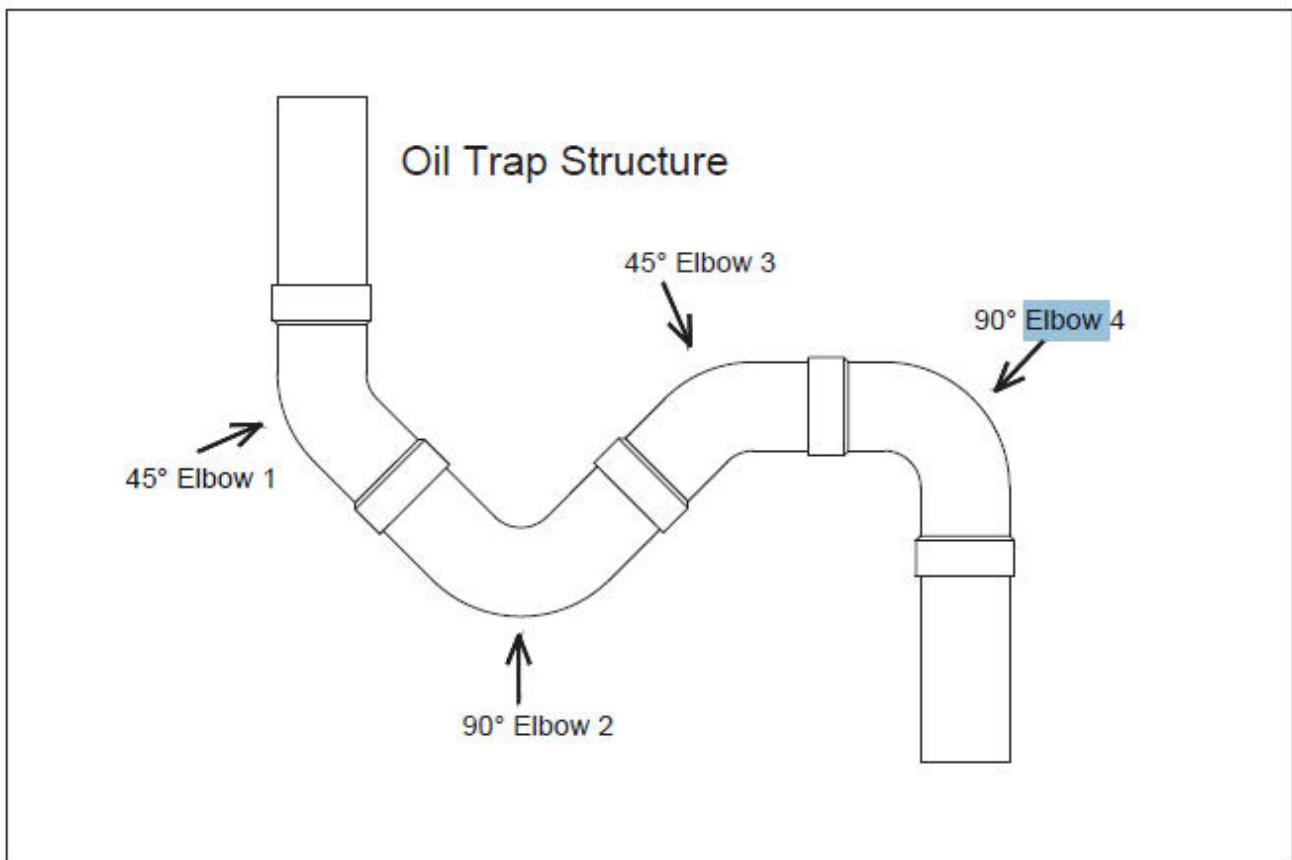
1.3. Connect the pipes.

1.4. Then, open the stem of stop valves of the outdoor unit to make the refrigerant pipe connecting the indoor unit with the outdoor unit in fluent flow.

1.5. Be sure of no leakage by checking it with leak detector or soap water.

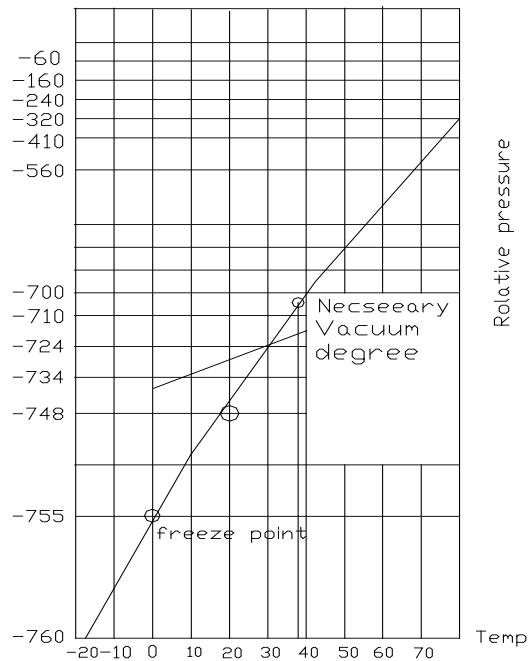
1.6. Cover the joint of the connecting pipe to the indoor unit with the soundproof / insulating sheath (fittings), and bind it well with the tapes to prevent leakage.

2. Oil return bend installation


Note that the length of the connecting line from the outdoor unit to the indoor unit cannot exceed 131 feet.

- If all long lines are in a horizontal state, no additional measures are required;
- If there is a vertical height difference in the long line, it needs to be installed according to the following requirements:

- When the outdoor unit is below the indoor unit, no additional measures are required;
- When the outdoor unit is below the indoor unit, and the vertical height difference is $h < 40$ feet, no additional measures are required.
- When the outdoor unit is below the indoor unit, and the vertical height difference is $h > 40$ feet. An oil return bend needs to be added.


NOTE: The vertical height difference between the outdoor unit and the indoor unit cannot exceed 66 feet.

The following is the connection method of the oil return bend.

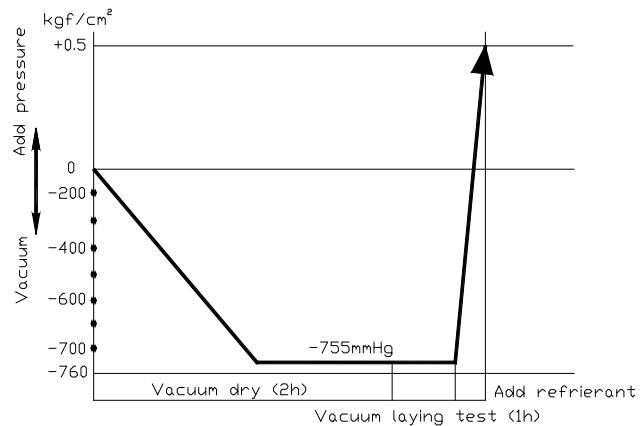
3. Vacuum Dry and Leakage Checking

3.1 Vacuum Dry: use vacuum pump to change the moisture (liquid) into steam (gas) in the pipe and discharge it out of the pipe to make the pipe dry. Under one atmospheric pressure, the boiling point of water(steam temperature) is 100°C. Use vacuum pump to make the pressure in the pipe near vacuum state, the boiling point of water falls relatively. When it falls under outdoor temperature, the moisture in the pipe will be vaporized.

3.2 Vacuum dry procedure

There are two methods of vacuum dry due to different construction environment: common vacuum dry, special vacuum dry.

①. Common vacuum dry procedure

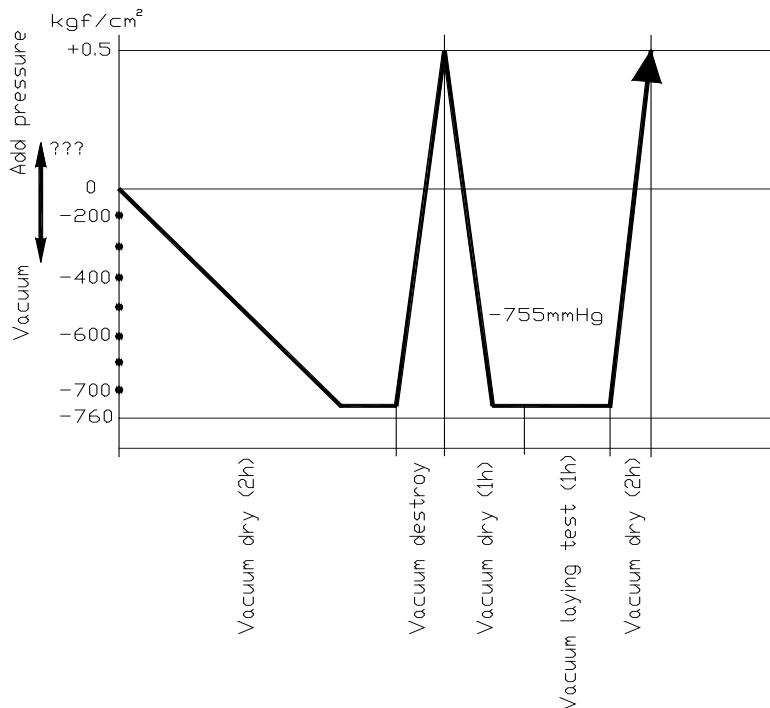

Vacuum dry (for the first time) ---connect the all-purpose detector to the inlet of liquid pipe and gas pipe, and run the vacuum pump more than two hours (the vacuum pump should be below -755mmHg) If the pump can't achieve below -755mmHg after pumping 2 hours, moisture or leakage point will still exist in the pipe. At this time, it should be pumped 1 hour more.

If the pump can't achieve -755mmHg after pumping 3 hours, please check if there are some leakage points.

Vacuum placement test: place 1 hour when it achieves -755mmHg, pass if the vacuum watch shows no rising. If it rises, it shows there's moisture or leakage point.

Vacuuming from liquid pipe and gas pipe at the same time.

Sketch map of common vacuum dry procedure.



② Special vacuum dry procedure

- Vacuum dry for the first time 2h pumping
- Fill nitrogen to 0.5Kgf/cm²

Because nitrogen is for drying gas, it has vacuum drying effect during vacuum destroy. But if the moisture is too much, this method can't dry thoroughly. So, please pay more attention to prevent water entering and forming condensation water.

- Vacuum dry for the second time for 1h pumping
- If -755mmHg can't be achieved in 2h, repeat procedure "b" and "c".
- Vacuum placing test 1h
- Sketch map of special vacuum dry procedure

4. Additional Refrigerant Charge

Caution

- Refrigerant cannot be charged until field wiring has been completed.
- Refrigerant may only be charged after performing the leak test and the vacuum pumping.
- When charging a system, care shall be taken that its maximum permissible charge is never exceeded, in view of the danger of liquid hammer.
- Charging with an unsuitable substance may cause explosions and accidents, so always ensure that the appropriate refrigerant is charged.
- Refrigerant containers shall be opened slowly.
- Always use protective gloves and protect your eyes when charging refrigerant.

Weigh-In Method

The factory charge in the outdoor unit is sufficient for 15 feet of standard size interconnecting liquid line. Additional 0.47 oz/ft refrigerant is needed when length of pipe is more than 25 feet.

Additional Refrigerant Guidelines

Piping length (ft)/(m)	Additional charge (oz)/(kg)
15/4.57	0
25/7.62	4.73/0.13
75/22.86	28.39/0.80
100/30.48	40.21/1.14
131/39.93	54.88/1.56

Charging and Refrigerant Adjustment in Cooling Mode

Check the outdoor ambient temperature

Check the ambient temperature. Subcooling method (cooling mode) is only for outdoor temperature between 57°F and 118°F, and indoor temperature between 68°F and 89°F. For temperature out of the range, use the weight-in method mentioned above.

Superheat Method in Cooling for Piston Matchups

Calculate super heat value in Cooling for Piston Matchups. Calculate super heat value with measured vapor line temperature and pressure according to Table 4.1. If calculated super heat value is lower than the design super heat value of Table 4.2, refrigerant should be recovered. If calculated super heat value is higher than the value of Table 4.2, refrigerant should be added.

Suction Temp (°F)	Superheat Value (°F)								
	6	8	10	12	14	16	18	20	22
	Suction Gauge Pressure (PSI)								
40	107	103	99	95	91	87	84	80	77
42	112	107	103	99	95	91	87	84	80
44	116	112	107	103	99	95	91	87	84
46	121	116	112	107	103	99	95	91	87
48	126	121	116	112	107	103	99	95	91
50	131	126	121	116	112	107	103	99	95
52	136	131	126	121	116	112	107	103	99
54	141	136	131	126	121	116	112	107	103
56	146	141	136	131	126	121	116	112	107
58	151	146	141	136	131	126	121	116	112
60	157	151	146	141	136	131	126	121	116
62	162	157	151	146	141	136	131	126	121
64	168	162	157	151	146	141	136	131	126
66	174	168	162	157	151	146	141	136	131
68	180	174	168	162	157	151	146	141	136
70	186	180	174	168	162	157	151	146	141
72	193	186	180	174	168	162	157	151	146

Table 4.1

Outdoor DB (°F)	Indoor DB/WB (°F)				
	90/75	85/71	80/67	75/63	70/58
110	8±2	8±2	5±2	5±2	5±2
100	10±2	9±2	7±2	5±2	5±2
90	10±2	9±2	8±2	5±2	5±2
80	12±2	10±2	7±2	7±2	5±2
70	10±2	8±2	8±2	5±2	5±2
60	9±2	7±2	5±2	5±2	5±2

* For 30K/36K, add 6°F of super heat.

Table 4.2

5. Insulation Work

5.1 Insulation material and thickness

5.1.1. Insulation material

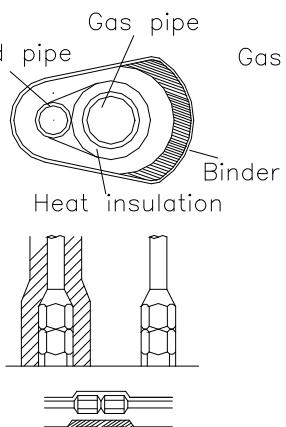
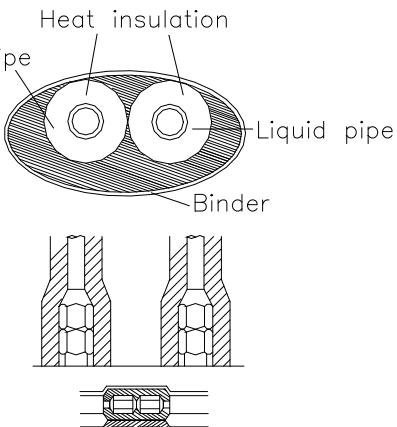
Insulation material should adopt the material which is able to endure the pipe's temperature: no less than 70°C in the high-pressure side, no less than 120°C in the low-pressure side (For the cooling type machine, no requirements at the low-pressure side.)

Example: Heat pump type----Heat-resistant Polyethylene foam (withstand above 120°C)

Cooling only type----Polyethylene foam (withstand above 100°C)

5.1.2. Thickness choice for insulation material

Insulation material thickness is as follows:

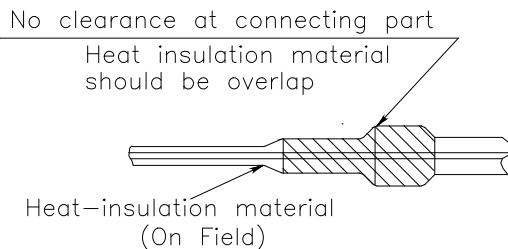



	Pipe diameter (mm)	Adiabatic material thickness
Refrigerant pipe	Φ6.4—Φ25.4	10mm
	Φ28.6—Φ38.1	15mm
Drainage pipe	Inner diameterΦ20—Φ32	6mm

5.2 Refrigerant pipe insulation

5.2.1. Work Procedure

- ① Before laying the pipes, the non-jointing parts and non-connection parts should be heat insulated.
- ② When the gas proof test is eligible, the jointing area, expanding area and the flange area should be heat insulated.

5.2.2. Insulation for non-jointing parts and non-connection parts


wrong	right	
Gas pipe and liquid pipe should not be put together to insulate	Insulate the gas pipe (cooling only)	Insulate the gas pipe and liquid pipe

R32 60Hz 20 SEER Universal Outdoor Series Technical Manual

For construction convenience, before laying pipes, use insulation material to insulate the pipes to be dealt with, at the same time, at two ends of the pipe, remain some length not to be insulated, in order to be welded and check the leakage after laying the pipes.

5.2.3. Insulate for the jointing area, expanding area and the flange area

- ① Insulate for the jointing area, expanding area and the flange area should be done after checking leakage of the pipes
- ② Make sure there's no clearance in the joining part of the accessorial insulation material and local preparative insulation material.

5.3 Drainage pipe insulation

The connection part should be insulated, or else water will be condensing at the non-insulation part.

5.4 Note

5.4.1 The jointing area, expanding area and the flange area should be heat insulated after passing the pressure test.

5.4.2 The gas and liquid pipe should be heat insulated individually, the connecting part should be heat insulated individually.

5.4.3 Use the attached heat-insulation material to insulate the pipe connections (pipes' tie-in, expand nut) of the indoor unit.

6. Test Operation

(1) The test operation must be carried out after the entire installation has been completed.

(2) Please confirm the following points before the test operation.

The indoor unit and outdoor unit are installed properly.

Tubing and wiring are correctly completed.

The refrigerant pipe system is leakage-checked.

The drainage is unimpeded.

The ground wiring is connected correctly.

The length of the tubing and the added stow capacity of the refrigerant have been recorded.

The power voltage fits the rated voltage of the air conditioner.

There is no obstacle at the outlet and inlet of the outdoor and indoor units.

The gas-side and liquid-side stop values are both opened.

The air conditioner is pre-heated by turning on the power.

(3) According to the user's requirement, install the 24v thermostat

(4) Test operation

Set the air conditioner under the mode of "COOLING" with the thermostat.

, and check the following points.

Indoor unit

Whether the fan motor operate normally.

Whether the room temperature is adjusted well.

Whether the indicator lights of indoor board normally.

Whether the drainage is normal.

Whether there is vibration or abnormal noise during operation.

Outdoor unit

Whether there is vibration or abnormal noise during operation.

Whether the generated wind, noise, or condensed of by the air conditioner have influenced your neighborhood.

Whether any of the refrigerant is leaked.

Appendix: R-T table**5K: Applicable T1/T2/T3/T4 temperature sensor**

T (°C)	Rmin (KΩ)	Rnom (KΩ)	Rmax (KΩ)	T (°C)	Rmin (KΩ)	Rnom (KΩ)	Rmax (KΩ)
-30	51.159	52.84	54.521	26	4.771	4.821	4.871
-29	48.659	50.232	51.805	27	4.599	4.649	4.699
-28	46.299	47.772	49.248	28	4.434	4.485	4.535
-27	44.071	45.452	46.832	29	4.277	4.327	4.377
-26	41.968	43.261	44.554	30	4.126	4.176	4.226
-25	39.981	41.193	42.405	31	3.981	4.031	4.081
-24	38.102	39.238	40.375	32	3.842	3.892	3.942
-23	36.326	37.391	38.457	33	3.709	3.759	3.808
-22	34.646	35.645	36.645	34	3.581	3.631	3.68
-21	33.055	33.993	34.931	35	3.495	3.508	3.557
-20	31.55	32.43	33.31	36	3.34	3.389	3.438
-19	30.097	30.923	31.748	37	3.226	3.275	3.323
-18	28.722	29.497	30.271	38	3.117	3.165	3.213
-17	27.42	28.147	28.873	39	3.012	3.06	3.107
-16	26.186	26.868	27.55	40	2.912	2.959	3.006
-15	25.017	25.657	26.297	41	2.815	2.861	2.908
-14	23.908	24.509	25.11	42	2.722	2.768	2.814
-13	22.857	23.421	23.985	43	2.633	2.678	2.724
-12	21.859	22.389	22.918	44	2.547	2.592	2.637
-11	20.912	21.409	21.907	45	2.464	2.509	2.553
-10	20.013	20.48	20.917	46	2.385	2.429	2.473
-9	19.116	19.584	20.023	47	2.308	2.352	2.395
-8	18.322	18.734	19.146	48	2.235	2.278	2.231
-7	17.54	17.927	18.314	49	2.164	2.207	2.249
-6	16.797	17.16	17.524	50	2.096	2.138	2.18
-5	16.09	16.431	16.733	51	2.03	2.071	2.112
-4	15.418	15.739	16.06	52	1.966	2.006	2.047
-3	14.779	15.08	15.382	53	1.904	1.944	1.984
-2	14.17	14.454	14.737	54	1.844	1.884	1.923
-1	13.591	13.857	14.124	55	1.787	1.826	1.865
0	13.04	13.29	13.54	56	1.732	1.77	1.809
1	12.505	12.739	12.974	57	1.679	1.717	1.754
2	11.995	12.215	12.436	58	1.628	1.665	1.702
3	11.509	11.717	11.924	59	1.579	1.615	1.652
4	11.047	11.241	11.436	60	1.531	1.567	1.603
5	10.606	10.789	10.971	61	1.485	1.521	1.556
6	10.186	10.357	10.529	62	1.441	1.476	1.511
7	9.785	9.945	10.107	63	1.399	1.433	1.467
8	9.403	9.554	9.705	64	1.357	1.391	1.425
9	9.038	9.18	9.322	65	1.318	1.351	1.384
10	8.69	8.823	8.956	66	1.279	1.312	1.344
11	8.357	8.482	8.607	67	1.242	1.274	1.306
12	8.04	8.157	8.274	68	1.206	1.237	1.269
13	7.736	7.816	7.957	69	1.171	1.202	1.233
14	7.446	7.55	7.653	70	1.137	1.168	1.199
15	7.169	7.266	7.363	71	1.105	1.135	1.165
16	6.9	6.991	7.082	72	1.074	1.103	1.133
17	6.644	6.729	6.814	73	1.043	1.072	1.101
18	6.398	6.478	6.558	74	1.014	1.043	1.071
19	6.163	6.238	6.313	75	0.986	1.014	1.042
20	5.938	6.008	6.078	76	0.959	0.986	1.014
21	5.723	5.789	5.854	77	0.932	0.959	0.986
22	5.517	5.578	5.64	78	0.907	0.933	0.96
23	5.32	5.377	5.484	79	0.882	0.908	0.934
24	5.131	5.185	5.238	80	0.858	0.884	0.91
25	4.95	5	5.05				

50K: Applicable exhaust temperature sensor (T5/TP)

T (°C)	Rmin (KΩ)	Rnom (KΩ)	Rmax (KΩ)	T (°C)	Rmin (KΩ)	Rnom (KΩ)	Rmax (KΩ)
0	157.7	161.2	164.7	56	14.16	14.48	14.81
1	150.2	153.4	156.7	57	13.65	13.96	14.28
2	142.9	145.9	148.9	58	13.15	13.46	13.77
3	136.1	138.9	141.7	59	12.69	12.99	13.30
4	129.7	132.3	134.9	60	12.23	12.53	12.83
5	123.6	126.0	128.4	61	11.80	12.09	12.39
6	117.8	120.0	122.3	62	11.39	11.67	11.96
7	112.2	114.3	116.4	63	10.98	11.26	11.54
8	107.1	109.0	111.0	64	10.60	10.87	11.15
9	102.1	103.9	105.7	65	10.23	10.50	10.77
10	97.42	99.08	100.8	66	9.880	10.14	10.41
11	92.97	94.51	96.06	67	9.537	9.792	10.05
12	88.74	90.17	91.61	68	9.211	9.460	9.715
13	84.73	86.05	87.38	69	8.897	9.141	9.391
14	80.92	82.14	83.37	70	8.595	8.834	9.078
15	77.29	78.42	79.56	71	8.306	8.539	8.778
16	73.84	74.89	75.95	72	8.028	8.256	8.490
17	70.57	71.54	72.51	73	7.759	7.983	8.212
18	67.46	68.35	69.25	74	7.501	7.720	7.944
19	64.49	65.32	66.15	75	7.254	7.468	7.687
20	61.68	62.44	63.20	76	7.016	7.225	7.440
21	59.00	59.70	60.40	77	6.786	6.991	7.201
22	56.44	57.09	57.74	78	6.565	6.765	6.971
23	54.02	54.61	55.20	79	6.352	6.548	6.749
24	51.70	52.25	52.80	80	6.147	6.339	6.536
25	49.50	50.00	50.50	81	5.950	6.138	6.331
26	47.37	47.87	48.37	82	5.761	5.944	6.133
27	45.34	45.84	46.34	83	5.578	5.757	5.942
28	43.41	43.91	44.41	84	5.401	5.577	5.758
29	41.59	42.08	42.57	85	5.231	5.403	5.580
30	39.84	40.33	40.82	86	5.069	5.237	5.410
31	38.18	38.66	39.15	87	4.912	5.076	5.245
32	36.59	37.07	37.55	88	4.760	4.921	5.087
33	35.07	35.55	36.03	89	4.615	4.772	4.934
34	33.64	34.11	34.58	90	4.474	4.628	4.787
35	32.27	32.73	33.20	91	4.338	4.489	4.645
36	30.95	31.41	31.87	92	4.207	4.354	4.506
37	29.70	30.15	30.61	93	4.081	4.225	4.374
38	28.50	28.95	29.40	94	3.958	4.099	4.245
39	27.37	27.81	28.25	95	3.840	3.978	4.121
40	26.29	26.72	27.16	96	3.726	3.861	4.001
41	25.24	25.67	26.10	97	3.616	3.748	3.885
42	24.25	24.67	25.09	98	3.509	3.639	3.773
43	23.31	23.72	24.14	99	3.407	3.534	3.665
44	22.41	22.81	23.22	100	3.308	3.432	3.560
45	21.53	21.93	22.33	101	3.212	3.333	3.459
46	20.71	21.10	21.50	102	3.119	3.238	3.361
47	19.92	20.30	20.69	103	3.030	3.146	3.267
48	19.16	19.54	19.92	104	2.942	3.056	3.174
49	18.44	18.81	19.18	105	2.858	2.970	3.086
50	17.75	18.11	18.48	106	2.778	2.887	3.000
51	17.08	17.44	17.80	107	2.699	2.806	2.917
52	16.44	16.79	17.14	108	2.623	2.728	2.837
53	15.84	16.18	16.53	109	2.549	2.652	2.758
54	15.26	15.59	15.93	110	2.479	2.579	2.683
55	14.69	15.02	15.35				